MICROCHIP AN3084

Using the maXTouch Linux Driver

TABLE OF CONTENTS

O T [1o T [t o] o PP TSR PPRPROPPRUPI 1
1.1 SAMA5D3 Xplained Board 2
1.2 SAM Boot Assistance (SAM-BA) ... e 2
IO T UV =T LT oV oo - U PSSR 3
1.4 Github Repository — MaXTOUCKH_TINUX ...ouuiiiiiiiiiiiiie et ettt e et e e ettt e e e bt e e e e bt e e nnb e e e snseeeeenneeas 4
2.0 Building the source and setting up the tools5
2.1 Device Tree Filesccccooviiiiiiiiniiiceiiceeee)
2.1.1 at9l-sama5d3_xplained_dm_pda4.dtsib
2.1.2 at9l-sama5d3_xplained_pda4.dts5
2.2 Configuring the Kernel Options5
2.3 Loading the Touch Driver as a Module 6
2.4 BUIIAING the KEIMEI . ..eiiiiiiie ettt e ettt e et e e e st e e e s st e e asbe e e e as e e e enbeeeeenbeeeeenteeeanneeeeanes 6
2.5 Modifying the U-DOOT-ENV.EXE FIlEcoiiiiiiiiiieee ettt et e e e nes 7
2.6 Programming the SAMA5D3 Xplained Board8
3.0 maXTouch Linux Driver 9
3.1 I2C Driver — atmel_mxt_ts.c . .9
oI @] [=Tod o o T= TY=To I o (o) (oLt | OO PPPR PP 9
3.3 POWET UP QNG RESEL ..eiieiiiii it e ettt se ettt e st e e et e e e ssee e e e st e e e se e e e este e e e s e e e ansteeeassseenteeeennseeeennseeeennneeeannns 9
3.4 Downloading the Configuration .9
3.4.1 triggering configuration download With SYSTScceiiiiiiiiii e 10
3.4.2 Automatically downloading the configuration on driver Probecccceeiiiiieiiiee e 10
IS = 1000111V (= U oo | To (= USSP OPPRT
4.0 DEBUQGGING thE DIIVET ..ottt ettt h e h e ht e a et e et et et ebe bt e sbe e e bt e e bt e ebeeeabeenbnenineenene
4.1 Enabling Driver Debug Messages — dev_dbg ...
4.2 Viewing TOUCH EVENES — EVEESToi.iiiiiiiiiiiie ettt ettt ea et e e
4.3 Viewing Touch Events — ANAroid GEIEVENTc.uuiiiiiiieiiiie ettt et et e et e e sbe e e anaeaeennaeas
4.4 Debug File System Interface — sysfs
N 1 0= 0 T (o o7 PP PP OPPPPY
o U= o TN o =T =1 o) PSP PUSOPPROPPPRt
4.5 Improved Debug Interface ...
4.6 THhe MXE-APP ULIILY ©ooeeeieeieie e bttt b et re e et et et e b
P o] oY oo [Dt QAN =V I o o I 111 (o) VSRRSO

1.0 INTRODUCTION

This application note introduces the maXTouch Linux driver, its features and available debug options to help developers
with driver integration. It also provides details on how to configure and build the kernel on a test platform.

The maXTouch Linux driver is designed to support the Linux input subsystem. This driver resides in the drivers/input/
touchscreen directory of the kernel and interfaces with the hardware to generate 2D touch events to the Linux input
subsystem.

The Linux driver can be compiled as an in-built driver or as a module to be loaded after the initial kernel boot. The
application note provides details regarding function of the driver and the debug options that are available through the
touch driver along with information regarding the testing of the touch driver.

This application note assumes that the user has a Linux based PC (either actual or a virtual machine) and has basic
knowledge of the Linux OS. It also assumes basic use of Github. All testing has been done using the Ubuntu OS version
16.04. Any critical libraries or tools that need to be installed will be mentioned in this application note.

The details within this document will mainly reference the standard Linux kernel. Where possible, differences between
the Linux “distributions” (for example, Ubuntu, Android) in terms of tools, directory locations or behavior will be noted.

© 2019 Microchip Technology Inc. DS00003084A-page 1

AN3084

11

1.2

SAMAS5D3 Xplained Board

The platform used for testing and integration is the SAMA5D3 Xplained board. This SOC is a Cortex A5 ARM MPU. The
pre-built demonstration Yocto project provides a basis for touch driver testing and integration.

In this application note, the demo project linux4sam-poky-sam5d3_xplained_pda-5. 7 will be used. This can be found
at the following link:

ftp://Iwww. at91.com/pub/demo/linux4sam_5.7/linux4sam-poky-sama5d3_xplained_pda4-5.7.zip

NOTE At time of writing, the latest version of the demo project is version 6.0. However, a hardware or u-boot
change is required to enable video to work. See the following locations for more details:

https://www.at91.com/linux4sam/bin/view/Linux4SAM/U-Boot#PDA_detection_at_boot
or
https://www.at91.com/linux4sam/bin/view/Linux4SAM/SelectingPDAatBoot

This project should be extracted to a local directory on the user’'s PC. The content will be updated and used on the
SAMAS5D3 Xplained board to develop and test the touch driver. Note that only the compressed kernel image (zimage)
and device tree binaries (.dtb) will be updated for testing; the u-boot, at91bootstrap and the Yocto project layer files
will not be modified.

The following link contains additional information regarding the demo projects for the SAMA5D3 Xplained board and
other supporting tools for the board:

https://www.at91.com/linux4sam/bin/view/Linux4SAM/Sama5d3XplainedMainPage

FIGURE 1: SAMAS5D3 XPLAINED BOARD

SAM Boot Assistance (SAM-BA)

The SAM Boot Assistance (SAM-BA) in-system programmer is Microchip’s software for programming Microchip ARM
Thumb-based MPUs. It is run on the Linux OS platform on the user’s PC to re-program the MPU on the SAMA5D3
Xplained board.

Follow the link below to download and extract the SAM-BA program to a directory.
https://github.com/atmelcorp/sam-ba/releases

DS00003084A-page 2 © 2019 Microchip Technology Inc.

ftp://www.at91.com/pub/demo/linux4sam_5.7/linux4sam-poky-sama5d3_xplained_pda4-5.7.zip
https://www.at91.com/linux4sam/bin/view/Linux4SAM/SelectingPDAatBoot
https://www.at91.com/linux4sam/bin/view/Linux4SAM/U-Boot#PDA_detection_at_boot
https://www.at91.com/linux4sam/bin/view/Linux4SAM/Sama5d3XplainedMainPage
https://github.com/atmelcorp/sam-ba/releases

AN3084

1.3

Putty Terminal Program

To monitor activity during flashing and accessing the SAMAS5D3 board, the Linux putty terminal application is used for
serial communication. The putty terminal program is used throughout this application note to communicate to the
driver and exercise the various features that are supported by the maXTouch devices.

The baud rate settings for serial communication are listed in Table 1.

TABLE 1: BAUD RATE SETTINGS
Parameter Setting

Baud rate 115200

Data 8 bits

Parity None

Stop 1 bit

Flow control None

To install putty enter the following commands in the terminal window.

sudo apt-get update
sudo apt install putty

A USB to TTL serial cable is required to connect from the USB port of the PC to the J23 DBGU port of the SAMA5D3
evaluation board.

To find the USB port that is used for the USB to TTL serial cable, identify the USB connection by monitoring the last
lines of the dmesg command when the cable is plugged into the local PC. This will provide the device name assigned
by the Linux operating system. For example, in the dmesg listing below, the device /dev/ttyUSBO will be used to

configure the terminal emulator (as in the green text below).

[167305. 231492] usb 1-5: new full-speed USB device number 16 using xhci_hcd
[167305. 386051] usb 1-5: New USB device found, idVendor=0403, idProduct=6001
[167305. 386057] usb 1-5: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[167305. 386061] usb 1-5: Product: FT232R USB UART

[167305. 386065] usb 1-5: Manufacturer: FTDI

[167305. 386069] usb 1-5: SerialNumber: A505MLX6

[167306. 762669] usbcore: registered new interface driver usbserial_generic
[167306. 762696] usbserial: USB Serial support registered for generic

[167306. 768859] ushcore: registered new interface driver ftdi_sio

[167306. 768867] usbserial: USB Serial support registered for FTDlI USB Serial Device
[167306. 768915] ftdi_sio 1-5:1. 0: FTDI USB Serial Device converter detected
[167306. 768946] usb 1-5: Detected FT232RL

[167306. 769108] usb 1-5: FTDI USB Serial Device converter now attached to

© 2019 Microchip Technology Inc.

DS00003084A-page 3

AN3084

FIGURE 2:

Category:

¥ Session
Logging

¥ Terminal
Keyboard
Bell
Features

¥ Window
Appearance
Behaviour
Translation
Selection
Colours
Fonts

¥ Connection
Data
Proxy
Telnet
Rlogin

» SSH

About

Basic options for your PuTTY session
Specify the destination you want to conn

PUTTY CONFIGURATION

From the dmesg
command

Serial line Speed

/dev/ttyusBo 115200 |

Connection type:

Raw Telnet Rlogin SSH @ Serial

Load, save or delete a stored session

Saved Sessions

Default Settings Load
Save
Delete

Close window on exit:

@® Always Never Only on clean exit

Open Cancel

1.4 Github Repository — maXTouch_linux

The information in this document references the maXTouch_linux Github repository. This is found at the following

location:

https://github.com/atmel-maxtouch/maXTouch_linux

Within this repository, the user will find the releases for the maXTouch Linux driver. The latest released versions of the

driver can be found at the following location:

https://github.com/atmel-maxtouch/maXTouch_linux/releases

Under the Branch tab, the user will find the latest branches and tags listed for the repository:

« Branches are specifically for software development and may not have full features and functions that are

mentioned in this document.

The master branch contains the latest updated code changes to the repository. This branch should be used for any

new driver development.

« Tags have regular releases of the touch driver with full change notes. All commits are available for all tags that are

created in the repository.

FIGURE 3:

Branch: master «

Switch branches/tags

New pull request

Branches Tags

maXTouch-v4 18

v master

BRANCHES AND TAGS — MASTER BRANCH

| Branch: master~ New pull request

Switch branches/tags

Branches Tags

maXTouch-v4.19-20181115-v2.0

| maXTouch-v4.19-20181113-v1.0

To download a working copy of the repository for testing, use the following command:

sudo git clone git@github.com:atmel-maxtouch/maXTouch_linux.git

DS00003084A-page 4

© 2019 Microchip Technology Inc.

https://github.com/atmel-maxtouch/maXTouch_linux
https://github.com/atmel-maxtouch/maXTouch_linux/releases

AN3084

2.0

2.1

211

2.1.2

2.2

BUILDING THE SOURCE AND SETTING UP THE TOOLS

The SAMA5D3 Xplained board was used to test the Linux driver. To enable the driver to work on the SAMA5D3 Xplained
board, it is therefore necessary to modify various support files within the kernel. Modified versions of the kernel support
files are located in the maxTouch_Linux Github repository and this section describes the modifications to these files.

Device Tree Files

The device tree source and include files describe the hardware platform being used and have been modified to provide
support for the touch device. These files are included in the maXTouch_linux kernel repository (see Section 1.4 “Github
Repository — maXTouch_linux”), located in the arch/arm/boot/dts directory:

e at91l-samab5d3_xplained_dm_pda4.dtsi — Main device tree include file
e at91l-sama5d3_xplained_pda4.dts — Main device tree source file

The following sections describe the modifications that have been made to these files.

AT91-SAMA5D3_XPLAINED_DM_PDA4.DTSI
The at91-sama5d3_xplained_dm_pda4.dtsi file has been modified to contain the following lines:

atmel_mxt_ts@4a {

compatible = “atmel,atmel_mxt_ts”;

reg = <Ox4a>;

reset-gpios = <&pioE 6 GPIO_ACTIVE_LOW>;

interrupt-parent = <&pioE>;

interrupts = <7 0x2>; /* Falling edge only */

pinctrl-names = “default”;

pinctrl-0 = <&pinctrl_mxt_ts>;
}:
The device default address is 0x4A. Two of the SAMA5D3 GPIO lines are used for the maXTouch controller's RESET
and CHG lines (GPIO 6 and GPIO 7 respectively). The RESET line is assigned to be active low and the CHG interrupt
line is a falling edge-triggered GPIO.

AT91-SAMASD3_XPLAINED_PDA4.DTS

The only modification to the at91-sama5d3_xplained_pda4.dts file is the addition of the device tree include file with
the main modifications done above:

#include "at9l-sama5d3_xplained_dm_pda4.dtsi"

Configuring the Kernel Options

Before the kernel can be built, the build options must be set up. These options are used during build time to enable the
software features needed for the development platform and are defined in a .config file located in the root directory of
the kernel.

The .config file is generated using one of the following methods:
« A make command applied to a defconfig file
* The menuconfig application, provides a menu-driven user interface to enable or disable options

The defconfig file is the Linux kernel definition file for specific architectures and systems. Different flavors of these files
are located in the arch/arm/configs/ directory. For the SAMAS5D3 platform, the sama5_defconfig file is used.

The .config file is generated using the defconfig file by the following command:
make ARCH=arm sama5_defconfig

The .config file is automatically generated from the make command. The resulting .config file will contain the following
two modified entries that allow touchscreen support to be enabled:

CONFIG_INPUT_TOUCHSCREEN=y
CONFIG_TOUCHSCREEN_ATMEL_MXT=y

Alternatively, the menuconfig application can be used to generate the .config file. To do this, the Kconfig file (located
in the drivers/input/touchscreen/ directory) must contain the menuconfig option that will be seen when the user runs
the menuconfig application. In this case, the config TOUCHSCREEN_ATMEL_MXT entry in the Kconfig file defines a
method that allows the user to chose whether the atmel_mxt_ts driver is included in the compiled image as built-in code
or as a module:

© 2019 Microchip Technology Inc. DS00003084A-page 5

AN3084

2.3

2.4

config TOUCHSCREEN_ATMEL_MXT
tristate "Atmel mXT 12C Touchscreen®
depends on 12C
select FW_LOADER
help
Say Y here if you have Atmel mXT series 12C touchscreen,
such as AT42QT602240/ATMXT224, connected to your system.

If unsure, say N.

To compile this driver as a module, choose M here: the

module will be called atmel_mxt_ts.
To run the menuconTig option to configure the kernel options, use the following command:
make ARCH=arm menuconfig

Lastly, to use the options in the .config file at build time to compile the maXTouch driver, the following entry is placed
in the Makefile located in the drivers/input/touchscreen/ directory:

obj-$(CONFIG_TOUCHSCREEN_ATMEL_MXT) += atmel_mxt_ts.o

Loading the Touch Driver as a Module

The touch driver can be configured to be built in with the kernel image or as a module to be loaded later. Note that if the
maXTouch device configuration is to be loaded on a driver probe, the driver must be compiled as a module (see
Section 3.4.2 “Automatically downloading the configuration on driver probe”).

Before the kernel is built, the defconfig file should be modified to create a driver module (atmel_mst_ts.ko):
CONFI1G_TOUCHSCREEN_ATMEL_MXT=m

The following commands can be used to ensure the correct permissions are set up for the driver module once it is
installed:

chmod 0777 /sys/bus/i2c/drivers/atmel_mxt_ts/1-004a/debug_enable
chmod 0777 /sys/bus/i2c/drivers/atmel_mxt_ts/1-004a/mem_access
write /proc/sys/kernel/dmesg_restrict 0O

The chmod and dmesg_restrict lines are used for debug access to the chip during integration and debugging.
Permissions should be restored for production unless debug access is required at all times.

After the driver module is built, the user can install the module using the following command:

insmod /sys/lib/modules/atmel_mxt_ts.ko

Building the Kernel

Once the build options have been added to the .config file, the kernel can be built.

To build the kernel from source, an ARM cross compiler is needed. If a compiler has not been installed, the following
command will install the gcc compiler:

sudo apt-get install gcc-arm-linux-gnueabi

To add a system environment variable for the gcc compiler to the PC, use the following command:
export CROSS_COMPILE=arm-linux-gnueabi-

To build the kernel, use the following command:

make ARCH=arm

This will build the kernel and place the resulting compiled kernel image (zimage) in the arch/arm/boot directory. A new
device tree binary file will also be compiled and the resulting file (at91-sama5d3_xplained_pda4.dtb) placed in the
arch/arm/boot/dts directory.

Replace the old zimage and the .dtb file in the demo project linux4sam-poky-sam5d3_xplained_pda-5.7/ directory
with the newly compiled files. To replace the files, use the following commands:

sudo cp arch/arm/boot/zImage ~/linux4sam-poky-sam5d3_xplained_pda-5.7/zImage-sama5d3-xplained.bin
sudo cp arch/arm/boot/dts/at91-sama5d3_xplained_pda4.dtb ~/linux4sam-poky-sama5d3 xplained_pda-5.7/

DS00003084A-page 6 © 2019 Microchip Technology Inc.

AN3084

2.5 Modifying the U-boot-env.txt File

The U-boot environment binary file (u-boot-env.bin) contained in the linux4sam-poky-sam5d3_xplained_pda-5.7/
directory holds the address ranges and the sizes of the various install files from the demo project. To adjust the starting
addresses in the u-boot-env.bin file, you will need to create a shell script (called create-env.sh below).

Start by downloading the u-boot source code. A tool called mkenvimage will also be needed to create a new
u-boot-env.bin file with the correct size for the new compiled zimage. The mkenvimage file is located in the
u-boot-at91/tools/ directory. Use the following commands to get the u-boot source and make the mkenvimage tool:

git clone git://github.com/linux4sam/u-boot-at9l.git
make sama5d3_xplained_nandflash_defconfig
make

Now create the shell script file (create-env.sh) with the following content (where user-dir should be replaced by the
appropriate user directory):

#1/bin/bash

MKENV=/home/user-dir/u-boot-at91/tools/mkenvimage
SAMBA=/home/user-dir/sam-ba_3.2.1/sam-ba

UBENV=/home/user-dir/linux4sam-poky-sama5d3_xplained_pda4-5.7/u-boot-env._bin
dtbName=/home/user-dir/linux4sam-poky-sama5d3_xplained_pda4-5.7/at91-sama5d3_xplained_pda4.dtb
dtbLoadAddr=0x21000000

dtbAddr=0x180000

dtbSize=$(wc -c $dtbName | cut -d * * -f 1)
kernelName=/home/user-dir/linux4sam-poky-sama5d3_xplained_pda4-5.7/zImage
kernelLoadAddr=0x22000000

kernelAddr=0x200000

kernelSize=$(wc -c $kernelName | cut -d * * -f 1)

nand 0x20000, serial flash 0x2000, mmc raw 0x1000 (at91l-sama5_common.h)

envSize=0x20000

rm - $UBENV

$MKENV -p 0 -s $envSize -o $UBENV << EOF

bootdelay=1

baudrate=115200

bootargs=console=ttyS0,115200
mtdparts=atmel_nand:256k(bootstrap)ro,768k(uboot)ro,256K(env_redundant),b256k(env),512k(dtb),

6M(kernel)ro,-(rootfs) rootfstype=ubifs ubi.mtd=6 root=ubiO:rootfs

bootcmd=nand read $dtbLoadAddr $dtbAddr $dtbSize; nand read $kernellLoadAddr $kernelAddr
$kernelSize; bootz $kernellLoadAddr - $dtbLoadAddr

ethact=gmacO
stdin=serial
stdout=serial
stderr=serial
EOF

Set the permissions for the shell script:

chmod 777 create-env.sh

© 2019 Microchip Technology Inc. DS00003084A-page 7

AN3084

Finally run the shell script to create a new u-boot-env.bin file for the newly compiled zimage in the demo project folder:

./create-env.sh

2.6 Programming the SAMA5D3 Xplained Board

Programming the SAMA5D3 Xplained board requires the use of the SAM-BA application (see Section 1.2 “SAM Boot
Assistance (SAM-BA)"). You will also need a USB cable to connect the PC to the SAMA5D3 Xplained board.

To program the SAMA5D3 Xplained board:

1. Open the “Boot Dis” jumper, JP9 (NAND Flash Chip Select).

2. Power on the board while holding down the RESET button.

3. Release the RESET button.

4. Finally close the “Boot Dis” jumper.

Issue the following command from the linux4sam-poky-sama5d3_xplained_pda4-5.7 directory:
sudo ~/samba_3.2.2/samba —x demo_linux_nandflash-usb.qgml
The serial terminal will show the status of the NAND Flash while in programming mode.

When the flashing process has completed, power cycle the board.

DS00003084A-page 8 © 2019 Microchip Technology Inc.

AN3084

3.0

3.1

3.2

3.3

3.4

MAXTOUCH LINUX DRIVER

I2C Driver — atmel_mxt_ts.c

The Linux mainline kernel (www.kernel.org) contains a driver for maXTouch chips that use 12C-based communication.
The driver was originally added in kernel version 2.6.36 and was called qt602240. It was later renamed to
atmel_mxt_ts in version 2.6.39 onwards.

The atmel_mxt_ts driver is still present in the current v4.19 mainline Linux kernel and is located at:
https://github.com/torvalds/linux/blob/master/drivers/input/touchscreen/atmel_mxt_ts.c

The main purpose of the maXTouch Linux driver is to read touch events from the input device and transfer the data to
the Linux input subsystem. Event handlers distribute the events from the device, typically to userspace applications that
use the information to determine the location of the touch.

Events are generated when a user touches the touchscreen and interrupts are sent to the MPU. These interrupts are
received by the touch driver, which then initiates a read from the input device. Events can come from a finger, stylus,
glove or even a hovering object.

For debugging purposes, the input touch driver uses the sysfs filesystem to provide an interface to the kernel by
creating sysfs files within userspace. These files can be used to support firmware or configuration updates, and also
to provide information about the input device.

There have been many improvements and changes to the driver to fix bugs and improve support for the various
maXTouch devices. Over time, the mainline kernel touch driver has been simplified and support for the mxt-app
userspace tool has been removed from the mainline kernel. The primary focus of development for the maXTouch Linux
repository is therefore to restore support for mxt-app and continue to enhance the touch driver for new products.

Object-based Protocol

The control interface to all maXTouch chips conforms to a standard system known as the Object-based Protocol (OBP),
which defines how to interact with the various objects that are implemented on any particular chip. It defines a mapping
between registers and configuration values, and a way for objects to send status update messages to the host. For a
full description of the OBP for a particular device and firmware version, refer to the Protocol Guide issued for that device
and version.

Power Up and Reset

The driver controls touch acquisition by altering parameters in the Power Configuration T7 object.

When the Linux OS starts the driver probe process to pair hardware components with their supporting drivers, the
running configuration in the maXTouch device is cached.

When the system is stopped, a zero configuration is written to the active and idle times parameters. This puts the
maXTouch device into a deep sleep mode.

During driver probe, a reset of approximately 100 ms is performed. Note that the maXTouch device’s RESET line is

active low, so a gpiod_set_value system call of 1 to the reset_gpio variable will set the RESET line low. The
driver code is as follows:

#define MXT_RESET_INVALID_CHG 100 /* msec */

iT(1(IS_ERR(data->reset_gpio))) {
dev_info(&client->dev, "Resetting chip\n'™);
msleep(MXT_RESET_GPI10_TIME);
gpiod_set_value(data->reset_gpio, 1);
msleep(MXT_RESET_INVALID_CHG);
gpiod_set_value(data->reset_gpio, 0);

}

Downloading the Configuration

The maXTouch device contains a configuration which is stored in the device’s non-volatile memory (NVM). Using the
maXTouch Studio application, users can create a configuration optimized for their target sensor.

The mxt-app application and maXTouch Studio tools can save configuration files in two formats: extended
configuration format and RAW format. Configurations should be saved in RAW format when using the Linux driver.

© 2019 Microchip Technology Inc. DS00003084A-page 9

www.kernel.org
https://github.com/torvalds/linux/blob/master/drivers/input/touchscreen/atmel_mxt_ts.c

AN3084

34.1

3.4.2

3.5

An example of the header from a .raw file is as follows:

OBP_RAW V1

A4 03 23 AA 00 00 00
FCDAB2

CO5DFO

Note that the first line of the .raw file contains the string “OBP_RAW V1’ to indicate that the configuration was generated
in the RAW format.

There are several methods to update the configuration of the device:
« Through the mxt-app userspace application

« Triggered from the sysfs attribute “update_cfg”
« Automatically, upon driver probe

TRIGGERING CONFIGURATION DOWNLOAD WITH SYSFS

The following command downloads the configuration to the device and backs it up to the NVM. Note that the
configuration file is named maxtouch.cfg.

echo maxtouch.cfg > /sys/bus/i2c/drivers/atmel_mxt_ts/1-004a/update_cfg
On Linux systems, the file should be placed in the /lib/firmware directory.

On Android systems, the file should be placed in the /system/vendor/firmware directory.
The following is an example of the configuration download messages:

echo maxtouch.cfg > /sys/bus/i2c/drivers/atmel_mxt_ts/1-004a/update_cfg

atmel_mxt_ts 1-004a: Found configuration file: maxtouch.cfg

atmel_mxt_ts 1-004a: Config CRC Ox4FD6D1: does not match file Ox5FD6D1

atmel_mxt_ts 1-004a: Config CRC in file inconsistent, calculated=4FD6D1, file=5FD6D1
atmel_mxt_ts 1-004a: Resetting device

atmel_mxt_ts 1-004a: Config successfully updated

AUTOMATICALLY DOWNLOADING THE CONFIGURATION ON DRIVER PROBE

The configuration can be loaded on driver probe. For production devices it is desirable to have the maXTouch driver
check the configuration on every boot and upload it if necessary. This guards against problems caused by the
configuration being changed accidentally and allows the initial configuration to be set when the firmware is updated.

To ensure that the firmware and configuration can be loaded during driver probe, The driver must be compiled as a
module. The reason for this is that the system call for loading firmware and configuration is not available until the root
file system is booted up. If the driver is built-in, therefore, it is not possible to load configuration and firmware during
boot-up as the root file system is not ready on driver probe. If the driver is built as a module, however, it will be installed
after the SAMASD3 board is powered up and the root file system is loaded.

The following error message is the one that is typically seen on boot up in the dmesg dump:
Direct firmware load for maxtouch.cfg failed with error -2

This message can be ignored if the touch driver is built-in.

Firmware Upgrade

A maXTouch device may support different firmware versions. Changes between firmware versions may result in removal
or addition of individual configuration settings and entire objects, which alters the configuration CRC. This means that
when the firmware is upgraded, a new configuration is normally needed to be loaded into the chip. The kernel driver will
attempt to reload the configuration automatically.

The default “enc” firmware files are in ASCII HEX and must be converted into raw format:
xxd -r -p Firmware.enc > /lib/firmware/maxtouch.fw

The file must be placed in the firmware loader path similar to the maxtouch.cfg file (see Section 3.4 “Downloading the
Configuration”).

Next issue the following command to trigger the firmware update through the sysfs attribute:
echo maxtouch.fw > /sys/bus/i2c/drivers/atmel_mxt_ts/1-004a/update_fw

DS00003084A-page 10 © 2019 Microchip Technology Inc.

AN3084

The following is an example of the firmware update messages:

echo maxtouch.fw > /sys/bin/bus/i2c/drivers/atmel_mxt_ts/1-004a/update_fw
atmel_mxt_ts 1-004a: Opened firmware file: maxtouch.fw
atmel_mxt_ts 1-004a: File format is okay

atmel_mxt_ts 1-004a: Sent bootloader command.

atmel_mxt_ts 1-004a: Bootloader address: 26

atmel_mxt_ts 1-004a: Found bootloader 12C address
atmel_mxt_ts 1-004a: _ mxt_write_reg: i2c send failed (-121)
atmel_mxt_ts 1-004a: Unlocking bootloader

atmel_mxt_ts 1-004a: Sent 50 frames, 8024/150868 bytes
atmel_mxt_ts 1-004a: Sent 100 frames, 15824/150868 bytes
atmel_mxt_ts 1-004a: Sent 150 frames, 23624/150868 bytes
atmel_mxt_ts 1-004a: Sent 200 frames, 31424/150868 bytes
atmel_mxt_ts 1-004a: Sent 250 frames, 39224/150868 bytes
atmel_mxt_ts 1-004a: Sent 300 frames, 47024/150868 bytes
atmel_mxt_ts 1-004a: Sent 350 frames, 54824/150868 bytes
atmel_mxt_ts 1-004a: Sent 400 frames, 62624/150868 bytes
atmel_mxt_ts 1-004a: Sent 450 frames, 70424/150868 bytes
atmel_mxt_ts 1-004a: Sent 500 frames, 78224/150868 bytes
atmel_mxt_ts 1-004a: Sent 550 frames, 86024/150868 bytes
atmel_mxt_ts 1-004a: Sent 600 frames, 93824/150868 bytes
atmel_mxt_ts 1-004a: Sent 650 frames, 101624/150868 bytes
atmel_mxt_ts 1-004a: Sent 700 frames, 109424/150868 bytes
atmel_mxt_ts 1-004a: Sent 750 frames, 117224/150868 bytes
atmel_mxt_ts 1-004a: Sent 800 frames, 125024/150868 bytes
atmel_mxt_ts 1-004a: Sent 850 frames, 132824/150868 bytes
atmel_mxt_ts 1-004a: Sent 900 frames, 140608/150868 bytes
atmel_mxt_ts 1-004a: Sent 950 frames, 148408/150868 bytes
atmel_mxt_ts 1-004a: Sent 965 frames, 150868 bytes
atmel_mxt_ts 1-004a: The firmware update succeeded
atmel_mxt_ts 1-004a: Family: 164 Variant: 21 Firmware V2.3_.AA Objects: 39
atmel_mxt_ts 1-004a: Config CRC Ox4FD6D1: does not match file 0x09B259
atmel_mxt_ts 1-004a: Resetting device

atmel_mxt_ts 1-004a: Config successfully updated
atmel_mxt_ts 1-004a: Touchscreen size X1023Y1023

The __mxt_write_reg: 12c send failed (-121) message can be ignored. This message occurs because an
interrupt is generated from the device that causes an additional read at the 0x4A device address after the chip has
switched over to the bootloader address.

After the flash, the configuration is written if the maxtouch.cfg file is found in the same firmware loader path.

© 2019 Microchip Technology Inc. DS00003084A-page 11

AN3084

4.0

4.1

4.2

DEBUGGING THE DRIVER

There are various system level ways of debugging the touch driver. These are discussed below.

Enabling Driver Debug Messages — dev_dbg

One mechanism is to enable the dev_dbg messages that are coded into the driver to help understand the logic flow.
To enable debug message support, the following line of code needs to be added to the first line of the maXTouch driver.

#define DEBUG /* Can be added to the driver to get dev_dbg messages, first line */

NOTE This debug statement should be removed for production. I

FIGURE 4: DRIVER DEBUG MESSAGES

f—

Raags

S35 3535353335335555

Raags

—,TrTTTTT T T T T T T =T

V0L

- = =T

Viewing Touch Events — evtest

The evtest tool can display input event information that is reported from the maXTouch driver. The tool can also display
all of the touch events that are supported by the device.

By typing evtest, the user will see the available input devices, along with a listing of the event numbers assigned to
them.

FIGURE 5:

@S G [dev/ttyUSBO - PuTTY

When touching the screen, the monitor will list out all the events that occur, including events for press, move, and release
(see Figure 6). For a list of event codes, see the following location:

https://www.kernel.org/doc/html/latest/input//event-codes.html

DS00003084A-page 12 © 2019 Microchip Technology Inc.

https://www.kernel.org/doc/html/latest/input/event-codes.html

AN3084

FIGURE 6:

4.3

TOUCH EVE

NT CODES WHEN FINGER IS PRESENT ON THE SENSOR

Jpe

Viewing Touch Events — Android getevent

)

=

u

=

=

The Android getevent tool runs on the device and provides input event information that is reported from the kernel.

You can find more information regarding getevent at the following location:
https://source.android.com/devices/input/getevent

Issuing the following command will display the device information in the terminal window (see Figure 7).

getevent -i

FIGURE 7:

-
+
+
H
-
+
+
H
-
+
+
H
-
+
+
H

GETEVENT DEVICE INFORMATION

© 2019 Microchip Technology Inc.

DS00003084A-page 13

https://source.android.com/devices/input/getevent

AN3084

4.4

FIGURE 8: GETEVENT MESSAGES

@S & [dev/ttyUSBO - PuTTY

Debug File System Interface — sysfs

The sysTfs interface is a virtual file system for exporting kernel objects and is a ram-based file system based on ramfs.
It provides a means to export kernel data structures, their attributes, and the linkages between them to userspace.

Attributes are created within the driver for direct access to a firmware flash or the configuration (for example,
update_fw, update_cTg). Other attributes are created to access information obtained by the driver (for example,
fw_version, hw_version, config_crc). Store and show functions are created to allow write and read access to
the attributes.

When the sysfTs attributes are created, they appear as files in the /sys directory. The path is as follows:

cd /sys/bus/i2c/drivers/ddddd/b-00xx/

where:

non

ddddd = Name of the driver. For instance, "atmel_mxt_ts", "sec_touch", "maXTouch", etc.
b = 12C Adapter (value “1")
00xx = I°C Address

For example:

cd /sys/bus/i2c/drivers/atmel_mxt_ts/1-004a/

The attributes created by the driver are as follows:

» fw_version — Gets current firmware version of the device

* hw_version — Gets the maXTouch device’s family ID and the variant ID
» update_cfg — Used to update the configuration

» config_crc — Used to get current configuration CRC from the device

« debug_enable, debug_v2_enable, debug_notify — Attributes used to enable debug messages to be polled
from the dmesg (driver message) buffer or the maXTouch device Message Processor T5 object.

DS00003084A-page 14 © 2019 Microchip Technology Inc.

AN3084

44.1

4.4.2

4.5

4.6

* mem_access — Gives access to the 12C address space for mxt-app operation and config loading
« mxt_debug_msg — Enables access to the Message Processor T5 messages from the device

MEM_ACCESS

The mem_access binary attribute provides read and write access to the touch device. It is used for loading the firmware
and configuration, as well as, provides access to the device when using the mxt-app application. The permissions to
this attribute need to be set to 777 to allow data to be buffered between the device and the mxt-app application.

DEBUG_ENABLE
The debug_enable attribute allows the user to turn on messages that would directly come from the Message
Processor T5 object. These messages can be enabled by echoing a ““1” to the debug_enabl e attribute.
echo “1” > /sys/bus/i2c/drivers/atmel_mxt_ts/1-004a/debug_enable

atmel_mxt_ts 1-004a: debug enabled

atmel_mxt_ts 1-004a: message: 31 94 90 02 b2 01 00 00 00 00
atmel_mxt_ts 1-004a: message: 31 91 91 02 b2 01 00 00 00 00
atmel_mxt_ts 1-004a: message: 31 91 92 02 b2 01 00 00 00 00
atmel_mxt_ts 1-004a: message: 31 91 93 02 b2 01 00 00 00 00

Improved Debug Interface

An enhanced debug interface is supported in the driver for message debug output. This consists of the following sysfs
attributes:

debug_v2_enable
debug_notify
mxt_debug_msg (binary attribute)

The interface is enabled using debug_v2_enable.

The interface does not use dmesg. Instead, messages can be read from the mxt_debug_msg binary attribute. The
debug_notify attribute can be polled synchronously to determine if there are more messages.

The mxt-app Utility

The mxt-app utility allows the user to perform certain operations from the command line and through a menu of select
options. The source for the mxt-app and information on how to build the application is available at the following
location:

https://github.com/atmel-maxtouch/mxt-app
When run without options mxt-app provides a menu from which the user can choose from the following options:

¢ Load a configuration file (both .raw and .xcfg format)
« Save configuration file

« Display the info block

* Read object configuration settings

« Write object configuration settings

« Run self tests using the Self Test T25 object
¢ Flash firmware to the chip (in .enc format)

« Backup configuration data to NVRAM

¢ Reset the device

« Calibrate the device

» Display raw messages

* Dump diagnostic data

Additional commands are available when running the utility on the command line. These are listed below.
The mxt-app command line features also allow scripts to be created for automated testing.

© 2019 Microchip Technology Inc. DS00003084A-page 15

https://github.com/atmel-maxtouch/mxt-app

AN3084

Command line tool for Atmel maXTouch chips version: 1.28-5-gd8202el
Usage: ./mxt-app [command] [options]
When run with no options, access menu interface.

General commands:
-h [--help]
-i [--info]
-M [--messages] [TIMEOUT]
-F [--msg-filter] TYPE

display this help and exit

print device information

print the messages (for TIMEOUT seconds)
message filtering by object TYPE

--reset reset device

--reset-bootloader reset device in bootloader mode
--calibrate send calibrate command
--backup[=COMMAND] backup configuration to NVRAM
-g store golden references

--self-cap-tune-config
--self-cap-tune-nvram
--version

--block-size BLOCKSIZE

tune self capacitance settings to config

tune self capacitance settings to NVRAM

print version

set the maximum block size used for i2c transfers (default 255)

Configuration file commands:
--load FILE
--save FILE
--checksum FILE

upload cfg from FILE in .xcfg or OBP_RAW format
save cfg to FILE in .xcfg or OBP_RAW format
verify .xcfg or OBP_RAW file config checksum

Register read/write commands:

-R [--read] read from object

-W [--write] write to object

-n [--count] COUNT read/write COUNT registers
-f [--format] format register output

-1 [--instance] INSTANCE
-r [--register] REGISTER
-T [--type] TYPE

--zero

select object INSTANCE

start at REGISTER (offset when used with TYPE)
select object TYPE

zero all configuration settings

TCP socket commands:
-C [--bridge-client] HOST
-S [--bridge-server]
-p [--port] PORT

connect over TCP to HOST
start TCP socket server
TCP port (default 4000)

Bootloader commands:
--bootloader-version
--flash FIRMWARE
--Ffirmware-version VERSION

query bootloader version
send FIRMWARE to bootloader
check firmware VERSION before and after flash

T68 Serial Data commands:
--t68-Ffile FILE
--t68-datatype DATATYPE

upload FILE
select DATATYPE

T25 Self Test commands:
-t [--test]
-tXX [--test=XX]

run all self tests
run individual test, write XX to CMD register

T37 Diagnostic Data commands:
--debug-dump FILE
--frames N
--references
--self-cap-signals
--self-cap-deltas
--self-cap-refs
--active-stylus-deltas
--active-stylus-refs

capture diagnostic data to FILE
capture N frames of data

capture references data

capture self cap signals

capture self cap deltas

capture self cap references
capture active stylus deltas
capture active stylus references

DS00003084A-page 16 © 2019 Microchip Technology Inc.

AN3084

Broken line detection commands:
--broken-line
--dualx
--x-center-threshold N
--X-border-threshold N
--y-center-threshold N
--y-border-threshold N
--pattern PATTERN

run broken line detection

X lines are double connected

set X line center threshold to N percent
set X line border threshold to N percent
set Y line center threshold to N percent
set Y line border threshold to N percent
sensor PATTERN (ITO or XSense)

Sensor Variant algorithm commands:

--sensor-variant
--dualx

--fail-if-any
--max-defects
--upper-limit
--lower-limit
--matrix-size

=z2z=z2=2

Device connection options:

-q [--query]
-d [--device] DEVICESTRING

Examples:
-d 12c-dev:ADAPTER:ADDRESS
-d sysfs:PATH
-d hidraw:PATH

Debug options:
-v [--verbose] LEVEL

Perform the Sensor Variant algorithm

X lines are double connected

Fail the Sensor Variant test on any defects
Maximum No. of continuious defects

Upper limit for regression, in %

Lower limit for regression, in %

The allowed matrix size

scan for devices
DEVICESTRING as output by --query

raw i2c device, eg "i2c-dev:2-004a™
sysfs interface
HIDRAW device, eg "hidraw:/dev/hidraw0™

set debug level

© 2019 Microchip Technology Inc.

DS00003084A-page 17

AN3084

APPENDIX A: REVISION HISTORY

Revision A (May 2019)

Initial version

DS00003084A-page 18 © 2019 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended

manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge,
require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely,

the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean

that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized
access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your conve-
nience and may be superseded by updates. It is your
responsibility to ensure that your application meets with
your specifications. MICROCHIP MAKES NO REPRESEN-
TATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATU-
TORY OR OTHERWISE, RELATED TO THE INFORMA-
TION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANT-
ABILITY OR FITNESS FOR PURPOSE. Microchip dis-
claims all liability arising from this information and its use.
Use of Microchip devices in life support and/or safety appli-
cations is entirely at the buyer’s risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any
and all damages, claims, suits, or expenses resulting from
such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless oth-
erwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide head-
quarters, design and wafer fabrication facilities in Chandler and Tempe, Ari-
zona; Gresham, Oregon and design centers in California and India. The
Company’s quality system processes and procedures are for its PIC®
MCUs and dsPIC® DSCs, KEeLoQ® code hopping devices, Serial
EEPROMSs, microperipherals, nonvolatile memory and analog products. In
addition, Microchip’s quality system for the design and manufacture of
development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= IS0/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash,
tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet,
KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker,
SAM-ICE, Serial Quad I/0, SMART-IL.S., SQI, SuperSwitcher,
SuperSwitcher Il, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the
U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il
GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other
countries.

All other trademarks mentioned herein are property of their respective
companies.

© 2018 — 2019, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-4496-1

© 2019 Microchip Technology Inc.

DS00003084A-page 19

MICROCHIP

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongging
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79
Germany - Garching

Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra'anana
Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS00003084A-page 20

© 2019 Microchip Technology Inc

http://support.microchip.com
http://www.microchip.com

	Using the maXTouch Linux Driver
	Table of Contents
	1.0 Introduction
	1.1 SAMA5D3 Xplained Board
	1.2 SAM Boot Assistance (SAM-BA)
	1.3 Putty Terminal Program
	1.4 Github Repository – maXTouch_linux

	2.0 Building the source and setting up the tools
	2.1 Device Tree Files
	2.1.1 at91-sama5d3_xplained_dm_pda4.dtsi
	2.1.2 at91-sama5d3_xplained_pda4.dts

	2.2 Configuring the Kernel Options
	2.3 Loading the Touch Driver as a Module
	2.4 Building the Kernel
	2.5 Modifying the U-boot-env.txt File
	2.6 Programming the SAMA5D3 Xplained Board

	3.0 maXTouch Linux Driver
	3.1 I2C Driver – atmel_mxt_ts.c
	3.2 Object-based Protocol
	3.3 Power Up and Reset
	3.4 Downloading the Configuration
	3.4.1 triggering configuration download with sysfs
	3.4.2 Automatically downloading the configuration on driver probe

	3.5 Firmware Upgrade

	4.0 Debugging the Driver
	4.1 Enabling Driver Debug Messages – dev_dbg
	4.2 Viewing Touch Events – evtest
	4.3 Viewing Touch Events – Android getevent
	4.4 Debug File System Interface – sysfs
	4.4.1 mem_access
	4.4.2 debug_enable

	4.5 Improved Debug Interface
	4.6 The mxt-app Utility

	Appendix A: Revision History
	Revision A (May 2019)

