MICROCHIP ANS365
SAM L11 Security Reference Guide

Introduction

This document explains the different security features available on the Microchip SAM L11 microcontroller
that fulfill the following security requirements of the most embedded systems:
»  Software security, based on isolation of, and restricted access to certain data, resources, and code
*  Physical security with anti-tampering and encrypted memory interfaces
»  Communication security based on encryption, decryption, authentication algorithm, and strong key
management storage and provisioning

The following sections provide programming examples that illustrates the SAM L11 key features to fulfill
these requirements.
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TrustZone for ARMv8-M Implementation in SAM L11

The central security element for the Microchip SAM L11 microcontroller is the implementation of the
ARM® TrustZone® for an ARMv8-M device. The TrustZone technology is a System-on-Chip (SoC) and
MCU system-wide approach to security that enables Secure and Non-Secure code to run on a single
MCU.

TrustZone for an ARMv8-M device is based on a specific hardware that is implemented in the Cortex®-
M23 core, which is combined with a dedicated Secure instructions set. It allows the creation of multiple
software security domains that restricts access to selected memory, peripherals, and I/O to trusted
software without compromising the system performances.

The main goal of the TrustZone for a ARMv8-M device is to simplify security assessment of a deeply
embedded device. The principle behind the ARM® TrustZone® for a ARMv8-M embedded software
application is illustrated in the following figure.

Figure 1-1. Standard Interactions Between Secure and Non-Secure States

Secure state
r-----------

System Start

i
User application [FUREHGR Call

.,
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| Function Call

~ _ 7 TrustZone
for Cortex-M

Memory and Peripheral Security Attribution

To differentiate and isolate Secure code from Non-Secure code, the SAM L11 memory is partitioned into
ten different memory regions as represented in the following figure. Each region size is configurable using
dedicated NVM fuses, such as BS, BNSC, BOOTPROT, AS, ANSC, DS and RS.
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Figure 1-2. SAM L11 Memory Partitioning
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*  Non-Secure (NS): Non-Secure addresses are used for memory and peripherals, which are
accessible by all software that is running on the device.

»  Secure (S): Secure addresses are used for memory and peripherals, which are accessible only by
secure software.

*  Non-Secure Callable (NSC): NSC is a special type of Secure memory location. It allows software to
transition from a Non-secure to a Secure state.

The security attribute of each region will define the security state of the code stored in this region.

Secure and Non-Secure Code Execution

In the Cortex-M23 Core the security management is done with the IDAU interface. The IDAU interface
controls access to executing specific instructions based on the current core security state and the
address of the instruction.
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Figure 1-3. IDAU Interface and Memory Accesses
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Thanks to this implementation, a simple function call or an interrupt processing results in to be a branch
to a specific security state as illustrated in the following figure. This allows for efficient calling by avoiding
any code and execution overhead.

Figure 1-4. ARMv8-M With TrustZone States Transition
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ARMvE-M with TrustZone

1.21 Secure and Non-Secure Functions Call
To prevent Secure code and data from being accessed from a Non-Secure state, Secure code must meet
several requirements. The responsibility for meeting these requirements is shared between the MCU
architecture, software architecture and the toolchain configuration. A set of Secure instructions are
available to preserve and protect secure register values during the state transition handling. The Compiler
Security Extension (CMSE) provided by ARM allows the user to manage the use of these new ARMv8-M
Secure instruction sets on the Secure software side. Secure and Non-Secure function call mechanisms
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are shown in the following figure. The following are key Secure instructions to handle for Secure or Non-
Secure function calls.

*  Secure Gateway (SG): Used for switching from a Non-Secure to a Secure state at the first
instruction of a Secure entry point.

»  Branch with exchange to Non-Secure state (BXNS): Used by the Secure software to branch, or
return to the Non-secure program.

»  Branch with link and exchange to Non-Secure state (BLXNS): Used by the Secure software to call
the Non-Secure functions.

Figure 1-5. ARMv8-M Secure/Non-Secure Function Calls
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A direct API function call from the Non-Secure to the Secure software entry points is allowed only if the
first instruction of the entry point is a SG, and is in a Non-Secure callable memory location, as shown in
the following figure. The use of the special instructions (BXNS and BLXNS) are also required to branch to
Non-Secure code.

The Secure gateway decouples the addresses of the Secure gateways (in NSC regions) from the rest of
the Secure code. All the project Secure gateways are expected to be placed in the NSC memory, where
all other code from the secure executable is expected to be placed in the secure memory regions. This
limits the amount of code that can potentially be accessed by the non-secure state. This placement is
under the control of the secure developer.

Any attempts to access secure regions from the non-secure code, or a mismatch between the code that
is executed and the security state of the system results in a HardFault exception. See the following figure.
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Figure 1-6. Security State and Call Mismatch
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Secure and Non-Secure Interrupts Handling

The Cortex-M23 (ARMv8-M architecture) uses the same exception stacking mechanism as the ARMv7-M
architecture, where a subset of the core registers is stored automatically into the stack (hardware context
saving). This permits immediate execution of the interrupt handler without the need to perform a context
save in the software. ARMV8-M extends this mechanism to provide enhanced security based on two
different stack pointers (a Secure stack pointer and a Non-Secure stack pointer).

According to the priority settings configured in the Nested Vector Interrupt Controller (NVIC), Secure code
execution can interrupt Non-Secure code execution, and Non-Secure code can interrupt Secure code
execution. The NVIC registers at the core level are duplicated. This allows two vector table definitions,
one for Secure and another for Non-Secure.

At product start-up, all interrupts are mapped by default to the Secure world (Secure vector table).
Specific CMSIS functions accessible in the Secure world, allocate each interrupt vector to a non-secure
handler (declared in Non-Secure vector table).

If the Secure code is running when a higher priority Non-Secure interrupt arrives, the core pushes all the
register content into a dedicated secure stack. Registers are then zeroed automatically to prevent any
information being leaved, and the core executes the non-secure exception handler.

When the Non-Secure handler execution is finished, the hardware recovers all the registers from the
secure stack automatically. This mechanism is managed in hardware and does not require any software
intervention. This allows a Secure handover from running Secure code to a Non-Secure interrupt handler,
and returning to running Secure code.
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Figure 1-7. Cortex-M 23 Interrupt Mechanism
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Application Deployment Considerations

The SAM L11 system architecture combined with TrustZone for the ARMv8-M is set to three different
access levels to the chip resources. Those levels depend on the Debug Access Level setting (DAL) of the
target SAM L11 device.

Debug Access Level (DAL) and Chip Erase
The SAM L11 has three configurable debug access levels (DAL), which restrict programming and debug
access to Secure and Non-Secure resources in the system.

* DAL2: Debug access with no restrictions in terms of memory and peripheral accesses

*  DAL1: Access is limited to the Non-Secure memory regions. Secure memory region accesses are
forbidden.

» DALO: No Access is authorized except with a debugger using the Boot ROM Interactive mode

Note: Refer to the "Boot ROM" chapter of the "SAM L11 Data Sheet" for more details on Boot Interactive
Mode.

DAL is combined with three key protected ChipErase commands that provide three levels of NVM erase
granularity. The ChipErase command is used to increase the DAL level without compromising code
security (that is, erase of the code before changing to higher DAL level).

Figure 2-1. ChipErase Commands
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APP_S
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Important: The ChipErase commands (CMD_CEO, CMD_CE1, CMD_CE2 and
9 CMD_CHIPERASE) are only issued using the Boot ROM Interactive mode.

Figure 2-2. SAM L11 Configurable ChipErase Key Fuses
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The DAL, ChipErase commands, and key fuses can be programmed to a SAM L11 target device using

the Atmel Studio 7 (AS7) Device Programming Utility, as shown in image below.

Figure 2-3. ChipErase Commands Under AS7 Device Programming
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Figure 2-4. ChipErase Key Fuses Setting Under AS7 Device Programming
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The following figure illustrates the use of Set DAL and ChipErase commands during the SAM L11 project

deployment.

Figure 2-5. SAM L11 DAL and ChipErase Mechanism
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Customer A and Customer B

The combination of the system Set DAL and ChipErase with TrustZone for Cortex-M architecture allows
two deployment approaches: A single-developer approach (Customer A) and a dual-developer approach
(Customer A + Customer B).

© 2018 Microchip Technology Inc.
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Single-Developer Approach
In single developer approach, the developer (Customer A) is in charge of developing and deploying
Secure and Non-Secure code. The application of Customer A can be protected by using DALO.

Figure 2-6. Single Developer Approach

Blank L11 Final Application
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Dual-Developer Approach

In this approach, the first developer (Customer A) is in charge of developing the Secure application and
its associated Non-Secure callable library (. 1ib/.h), and providing a predefined linker file to the second
developer (Customer B). This Secure application is then loaded in the SAM L11 NVM and protected using
the set DAL1 command to prevent further access to the Secure memory region of the device.

A second developer (Customer B), will then start his development on a preprogrammed SAM L11 with
limited access to secure resources (call to Non-Secure API only). To do so, Customer B will use a linker
file and the NSC library provided by customer A.
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Figure 2-7. Dual Developer Approach
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The following sections of this document describe the application development and deployment process to
be implemented for both Customer A and Customer B sides.
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How to Develop a SAM L11 Application Under Atmel Studio 7

When starting development on the SAM L11, Customer A and Custoemr B should follow two different
approaches as the SAM L11 system architecture, combined with TrustZone for ARMv8-M, sets two
different access levels to the chip resources, such as debug, memories and peripheral.

Atmel Studio 7 integrated development platform provides a full set of advanced features to accelerate the
development of a SAM L11 application. The following sections illustrate the approaches to be followed by
Customer A and Customer B to create, customize, and debug their application.

Create and Configure a Secure Project (Customer A)

To help Customer A (regardless of single or dual developer approaches) start with the SAM L11, Atmel
Studio 7 provides a predefined Secure Solution template that illustrates basic Secure and Non-Secure
application execution. This template can be used to evaluate and understand the TrustZone for ARMv8-M
implementation in the device, or as a start-up point for custom solution development.

This section describes the following aspects of a secure solution development:

*  How to create, build, and debug a new solution for the SAM L11 under Atmel Studio 7
»  Secure solution template architecture overview

Create and Build the Solution
To create and build Secure Solution template follow these steps:

1.  Open Atmel Studio 7.
2. Select File > New > Project....
3. Configure the new solution in the New Project window:
3.1. Clcik the C/C++ tab.
3.2. Select SAM L11 Secure Solution.
3.3. Enter Name, Location, and Solution Name, and then click OK.
4. Create a new SAM L11 solution.
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Figure 3-1. Create a New SAM L11 Solution Under AS7
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5. The SAM L11 Secure Solution should appear as shown in figure below.
Figure 3-2. SAM L11 Secure Solution Under AS7
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7.

Note: The secure Solution Template processing will generate two warnings dues to override of the
main files from both Secure and Non-Secure. The user should not consider these warnings.

From the Build menu, select Build Solution (F7) to build the full solution.

Figure 3-3. Build Solution Under AS7
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Ensure that no errors are reported in the output window.
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Figure 3-4. Build Output Succeeded
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This solution is the starting point for any bare-metal development on the SAM L11 device.

SAM L11 Secure Solution Architecture

The SAM L11 Secure Solution Template is composed of preconfigured Non-Secure and Secure projects.
The project configuration aspects related to TrustZone for ARMv8-M implementation are already
implemented to facilitate the development process.

Non-Secure Project
The Non-Secure project is a standard application that runs in Non-Secure world.

This application can make use of all the system resources allocated to the Non-Secure world. It can also
call predefined Non-Secure Callable (NSC) functions defined in the veneer . h file, which are provided by
the Secure application.

The Non-Secure project architecture is shown below.
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Figure 3-5. Non-Secure Project Architecture
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[ samllleléa_sram.ld /
c| startup samlllelba.c
c system_samlllelba.c

¢ main.c [

fm veneer.h —"

Veneer header: Link to the veneer header file that contains

BRSNS

the definition of secure gateways declared by the Secure
project.

3.1.2.2 Secure Project
The Secure application project is in charge of the following applicative aspects:

» Initialization of the system security and resources attribution (memories as peripherals)
»  Execution of the Secure functions or drivers
+  Call to the Non-Secure application (main function)

Figure 3-6. Secure Project Architecture

4 SecureApp

=d| Dependencies

4 Output Files Secure linker files: Contains link configuration for the Secure

b = Libraries application
4 [ Device_Startup Secure Startup file: Contains the Secure vector table and

[ samillel6a_flash.ld // Secure Reset Handler.

[} samillel6a_sram.ld Secure System file: Contains the system init function in charge

¢ _startup_samlllel6a.c of secure system resources configuration (Clock, 10s, etc. ...).
¢ system_samlllel6a.c secure.c/.h files: Contains the Secure function examples

IS Secure_Functions Secure Main file: contains the Secure application main

€ securec d function

h secure.h '
= n‘;ain . Veneer: Contains the definition and declaration of the Non-
C| veneer.c P Secure Callable (NSC) gateways to the secure functions
R el declared and defined in secure.c/.h.

3.1.2.3 Project Properties
To access the project properties in the solution explore, on the Secure and Non-Secure projects, from the
short-cut menu select Properties.

Note: Ensure that all on-going debug session should be stopped before accessing the project
properties.

© 2018 Microchip Technology Inc. DS70005365A-page 19



AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-7. Access to Project Properties
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In Secure project properties, the support of TrustZone for ARMv8-M instructions and compiler attributes is
set using the -mcmse compiler flag.

This setting is accessible in the project properties window under Toolchain>ARM/GNU C
Compiler>Miscellaneous>Other flags.

Figure 3-8. SAM L11 Secure Project CMSE Compiler Option

My 111 Secure_Project”™ + X EElglNRLEREIcl Al main_s.c samlllelba_flash.ld* SECURE_APP_README.txt

Build

Configuration: ’Active (Debug) VI Platform: ’Active (ARM) -

Configuration Manager...

EVICE

Tool “ IEA_RM"{GNU Common ~ B ARM/GNU C Compiler = Miscellaneous

& General
PeEs ——LLutentSile: Other flags: -std=gnu39 -memse
Py 4 [ ARM/GNU C Compiler I

= mose -v)

; E;if;&;?;ssor ] Support ANSI programs (-ansi)

& Directories

jOptiml'zation

= ebugging

& General
& Libraries
jOptiml'zation
& Memory Settings
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4 [ ARM/GNU Assembler
& General
& Debugging L9
- @ARMHGNU Preprocessing Assen
& General
jf; Symbals -
< m | ¥
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The bridge between the Secure world and Non-Secure worlds is done through the specific Secure
Gateways (SG), which are also called Veneers, and are generated by the Secure project and placed
during the Secure project link into the Non-Secure Callable (NSC) memory region.

To perform this action, --cmse-implib and --out-implib linker options should be defined in the Secure
project properties.

Figure 3-9. SAM L11 Secure Project Linker --cmse implib and --out-implib Options

My 111 Secure_Project® + X SECURE_APP_READMEbt m X
Build
Configuration: ’Active (Debug) VI Platform: ’Active (ARM) VI
Build Events

Configuration Manager..,

EVICE

T 4 [Z] ARM/GNU Common . ; ker = M
ool - B
& General
Packs ) & Qutput Files Linker Flags: -Tsaml11el6a_flash.ld -Wl,--out-implib=secureapp-cmse-implib.lib -Wl,--c1
4 [Z] ARM/GNU C Compiler

Advanced =G | —
A ETery Cther options (-Xlinker [option]) L H| | o
& Preprocessor

= Symbaols

Ef Directories
= Optimization
& Debugging
;:g Warmings

L

« [ ARM/GNU Linker —
= ~ sal Cther objects L H| | o
& Libraries
= Optimization

L

& Miscellaneous
a ,

& General

& Debugging | 4
4 ﬂARM.-"GNU Preprocessing Assen

= General

& Symbols -
‘| n | 4| m J v

»  --out-implib linker option: specify the Secure gateway imported library name to be generated by the
linker

« --cmse-implib linker option: requests that the library specified by the --out-implib is a secure
gateway import library, suitable for linking a Non-Secure executable against the Secure code as per
the ARMv8-M Security Extension.

The Secure Solution template sets the following options: -WiI,--out-implib=secureapp-cmse-implib.lib -
WI,--cmse-implib. The secure project developer can customize the library name by changing the --out-
implib option value.

At the C code level, all functions, which are defined with the cmse_nonsecure_entry compiler attribute
from the ARM CMSE extension, will be placed in the Generated Secure Gateway Import Library.

/* Non-secure callable (entry) function */
int _ attribute ((cmse_nonsecure_entry)) secure_ funcl (int x)
{

return funcl (x);

}
Secure/veener.c

The Generated Secure Gateway import library (secureapp-cmse-implib.1ib) can be found in the
Debug directory of the SecureApp project:
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Figure 3-10. Generated Secure Gateway Import Library

@\\:).I? » Computar ¢ Local Dick (Cs] » Wiy SAM L11 Solution » My SAM 111 Solubion » Securedpp » Debug e -|-1 | 2
Organize ~ | Gpen Bum Mew folder = - '!-'}
et o lame ) Diate moditied Ype e
»m I 5 I
edce_Stamup AIANTHIZ PM Filie Tolde
...|rbaIB-:|: Secure_Functinns 117 B:13 PM = falde
- "I; | maind 124372007643 PM D File 15 KD
AppData ; ;
mang i} I 5 K
= Bes Syne ) o '
| makedepemk 15 1KR
Comacts
D"'k( Mekefile 13RI ELI PM File 3ka
= E” = 1 =] Securehpphin 227613 PM BIN File 5,200 KB
.ebtw:.: | Securshppasp A7 612 P EEP Filg k2
[L=]
= ; I;_ | SecureApptf 17 I 54 KB
avirites
i Sacurshpphe 1371372017 6:13 PM EX File KB
(_;-:l:-q: live [} SecurcAppiss 17 6 1 - 4 K3
FL‘L | SscursAppmap AMNTEAZ P MAPF k2
nki
= z o e
FPLABAP, £
o "’": * I _| secureapp-cmse-implibilib 1213/2017 643 M LE File 1E3 I
Yy Locuments
b My Music T - -
e B | veresro A3ZNTHIZ P OF BEE
& My Pictures
B My Videns
& Onelrive
Reaming
™ Saved Games
o Searches
Tracirg
& Camputer
&L Loca Disk ()
o DVD R Drive (D
Eecureapp-cmse-imphib b Ds [N =cre 1/ 16 P
A
Th Secure Gateway Import Library content can be verified using the arm-none-eabi-gcc-nm

command located in the ARM GCC Toolchain install location:
C:\Program Files (x86)\Atmel\Studio\7.0\toolchain\arm\arm-gnu-toolchain\bin.

Figure 3-11. arm-none-eabi-gcc-nm Output

i

BEX Administrator: C:\Windows\System32\cmd.exe

Microsoft Windows [Uersion 6-1.7681]
Copyright (c?> 2889 Microsoft Corporation. All rights reserved.

secureann se—imonlib.1lih
BUB/c8 A secure_funcl
HBBAE7cB8 A secure_func2

C: \My_SAM_L11_Solution:\My_SAM_Li1_Solution“Securefpp:\Debug>g

b

G “\My_SAM_L11_Solution“My_SAM_L11_Seolution:SecurefApp \Debug>arm—none—eabi—gcc—nm

Note: The ARM GCC Toolchain install path can be added to the windows environment variable path to
call the arm-none-eabi-gcc—-nm command from the . 1ib location, as shown in the previous figure.

In a Non-Secure project, the use of TrustZone for ARMv8-M is transparent for the developer.

Only the Secure Gateway Import Libraries and its associated header files should be included.

This setting is accessible in the project properties window under Toolchain>ARM/GNU Linker>Libraries.
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Figure 3-12. SAM L11 Non-Secure Project Linker Libraries Settings
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For additional information, refer to the Create and Configure a Non-Secure Project (Customer B) chapter.

Resources Attribution
The Secure project is in charge of allocating the SAM L11 resources to both the Secure and the Non-
Secure worlds.

Prior to starting any development and customization of the projects, it is mandatory to verify the system
security resources attribution.

System resources can be allocated to the Secure or Non-Secure worlds by setting the SAM L11 NVM
fuses. These fuses are in charge of defining the configuration of Boot modes, ChipErases, system
peripherals (BOD and watchdog), IDAU (Memory security attribution), and PAC (Peripheral security
attribution).

Any change to fuse configuration requires a restart of the device, as fuses are handled by the Boot ROM
executed at device start-up. The Boot ROM is responsible for copying the configuration of the fuses in the
different peripheral registers, then locking the configuration to any users (including Customer A) until the
next boot.

The configuration of the NVM fuses can be done through some definitions at the beginning of the Secure
main.c file, or in the Device Programing tool available in Atmel Studio 7 by clicking on Tools>Device

Programming.

Note:
*  The description of each USER_WORD can be found in section 70.2.1.2 SAM L11 User Row of the
product data sheet.
*  The complete description of the SAM L11 Boot ROM can be found in section 14. Boot ROM of the
product data sheet.

To configure the NVM fuses, perform these actions:
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1. Fuses definitions in the Secure project main. c file:
To ease the management of the fuses in charge of Memory and Peripheral security attribution, the
Secure main. c file includes USER_WORD_x definitions. Any modifications to these definitions

allows the Secure application developer to easily setup the security attribution of a specific
peripheral, and manage memory security partitioning.

Figure 3-13. Fuses definition in Secure Project Main.c File
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<) main.c
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#* TZ_START_NS: Start address of non-secure application

sdefine TI_START NS 2x2e0espee . SecureApp

5d Dependencies
#% USER_WORD_X: User Row (UROW) Word X definitions *f =4 Output Files
#define USER_WORD @ 8xBOBFA37F [* BOD, Watchdog and Misc settings */ b [ Libraries
wdefine USER_WORD_1 8xFFFFFBEE /* dog and Misc trings */ b 3 Device Starty
#define USER WORD I @xdéaszese /* morles Security tributlon: AS = @x88, ANSC = @x28, AS = oudd ™/ - e _p
#define USER_WORD_3 BxFFFFFEFF /% s te Enable =/ =
#define USER_WORD_4 8x30000008 /* Pc *y <)
wdefine USER_WORD 5 ex@pooepss /* Pz 2 B [NONSECE) */ g
#dafine USER_WORD & Bx2O0&6GE8 * | venzerh
__attribute_ ({section [“.userrowsec"}})
const unsigned long userRow[7] = { USER_WORD_@ , USER_WORD 1 , USER_WOAD_2, USER_WORD_3, USER_WOAD 4, USER_WORD S, L
#* typed=f for non-secure callbeck functions */
typedef woid (*funcptr_void) [void) _ attribute_ [(omse_nonsecure_call)); ¥
100% =4 »
Enitire Solution =| | 3 0 Emors | I 0'Wamnings | ) 0 Messages | | Build + IntelliSense - Search Error List P -
Description Project File Line
Error List

2. Fuse definitions in the device programming tool:
The device programing tool available in Atmel Studio provides a graphical interface for managing
the whole set of fuses through various standard device programing tools, such as EDBG, SAM-ICE,

J-Link, and so on.
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Figure 3-14. Fuses Definitions in Programming Tool
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By default, the Secure Solution template sets the following memory and peripheral security attributions in

the Secure main. c file.

*  Memory secure attribution fuses (User Row — UROW) with:

— AS =0x80

— ANSC =0x20
— RS =0x40

— DS =0x0
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Figure 3-15. SAM L11 Secure Template Memory Attribution

0x0000 0000

(AS x 0x100) — (ANSC x 0x20) = 0x7C00

APP_NSC

(AS x 0x100) = 0x2000

Ox1 0000
FLASH

O0x2000 0000
0x2000 0000 + (RS*0x80) = 0x2000 2000

O0x2000 4000

SRAM

Note: No boot section is defined in the template, therefore the boot parameters fuses (BOOTPROT, BS,
BNSC) are set to 0x00.

»  All peripherals allocated to the Secure application (NONSECA = 0x00 ; NONSECB = 0x00 ;
NONSECC = 0x00)

Important:
é These definitions should be modified in any applications that require different Secure or Non-
Secure resources attribution.

3.1.2.5 Project Linker Files
Secure and Non-Secure projects have their own linker file available in the Device _Startup directory. Both
linker files should be aligned to the memory mapping defined in the product fuses. The following sections
illustrate how to configure Secure and Non-Secure project linker files according to the following default
configuration set in the SAM L11 Secure Solution Template, see SAM L11 Secure Template Memory
Attribution.
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3.1.2.5.1 Secure Project Linker File Content
The Scure project linker file should define at least four secure memory sections which must be in line with

the memory attribution of each secure area defined by the NVM fuses (Secure main. c file).

* rom: Defines the Secure Application section of the FLASH memory.

* rom_nsc: Defines the Non-Secure Callable section of the FLASH memory.
* ram: Defines the Secure section of the SRAM memory.

+ userrow: Defines the NVM Fuses section.

/* Memory Spaces Definitions based on Memories Security Attribution: AS = 0x80, ANSC = 0x20,
RS = 0x40 */

MEMORY

{
rom (rx) : ORIGIN = 0x00000000, LENGTH = 0x00007C00
rom nsc (rx) : ORIGIN = 0x00007C00, LENGTH = 0x00000400
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 0x00002000
userrow (rw) : ORIGIN = 0x00804000, LENGTH = 0x00000100

}

Secure samlllel6a flash.ld

*  The following code should be present after the rom segments to link all the functions defined with
the attribute arm-none-eabi-gcc-nm.

.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > rom
PROVIDE HIDDEN ( exidx end = .);

. = ALIGN(4);
_etext = .;

. = ALIGN(4);
.gnu.sgstubs :

{
_ssgstubs = .;
} > rom nsc

Secure samlllel6a flash.ld

*  The following code should be present at the end of the Secure linker file to link the main.c User
Row (UROW) definition in the previously defined User Row (UROW) memory section.

. = ALIGN(8);
_estack = .;
} > ram

. = ALIGN (4);

_end = . ;
.userRowBlock :{

KEEP (* (.userrowsec) )

} > userrow

}

Secure samlllel6a flash.ld

3.1.2.5.2 Non-Secure Project Linker File Content
The use of TrustZone is transparent in the Non-Secure project linker file.

The Non-Secure rom and ram section definitions should be defined as they are in any standard GCC
executable projects.
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Important: Developers need to ensure that there is no overlapping between the Non-Secure
and Secure memory space definitions.

/* Memory Spaces Definitions based on Memories Security Attribution: AS = 0x80, ANSC = 0x20,
RS = 0x40 */

MEMORY

{
rom (rx) : ORIGIN = 0x00008000, LENGTH = 0x00008000
ram (rwx) : ORIGIN = 0x20002000, LENGTH = 0x00002000

}
Non-Secure samlllel6a flash.ld

For more details, refer to the Create and Configure a Non-Secure project (Customer B) chapter.

3.1.2.6 Secure Main Function
The Secure main function flowchart from the Secure Solution template is shown in the following figure.
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Secure main routine

Secure System initialization

Set Non-Secure main stack
pointer

Start Non-Secure
application

The Secure main routine is in charge of: the following:

»  Configuring system resources, security attribution of the system clocks, GPIO and mix Secure
peripherals (system_init function)

*  Prepares the Non-Secure main stack pointer (MSP_NS) before jumping to the Non-Secure
application

This Secure main. c file can be used as a starting point for any secure applications development.
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Note: The system init function is empty by default, keeping the SAM L11 registers at their reset
state (CPU running at 4MHz) . This function should be customized according to the Secure and Non-
Secure application requirements.

Non-Secure Main Function
The Non-Secure main function flowchart from the Secure Solution Template is shown in the following
figure.

< Non-secure main >

Secure function 1 call

Secure function 2 call

The Non-Secure main function illustrates calls to the Secure functions through each of the veneer, which
are provided by the Secure application.

This Non-Secure main. c file can be used as a starting point for any Non-Secure applications
development.

Secure and Non-Secure Functions Call (secure.c/.h; veneer.c/.h)

The SAM L11 Secure Solution Template illustrates the declaration, definition and use of Secure functions
across the Secure and Non-Secure projects.

© 2018 Microchip Technology Inc. DS70005365A-page 30



3.1.3

AN5365
How to Develop a SAM L11 Application Under Atmel S...

For more information on Secure and Non-Secure Function call, refer to the Secure and Non-Secure
Functions Call.

The following code example from veneer.c and secure.h illustrates the declaration and definition of a
Secure function and its veneer:

#ifndef SECURE_H_
#define SECURE H

extern int funcl (int x);

#endif /* SECURE H */

#include "secure.h"

int funcl (int x)

{

return x + 3;

}

#ifndef VENEER H_
#define VENEER H

/* Non-secure callable functions */
extern int secure funcl (int x);

#endif /* VENEER H_ */

/* Non-secure callable (entry) function */
int _ attribute ((cmse nonsecure entry)) secure_ funcl (int x)

{

return funcl (x):;

}

Thanks to the cmse_nonsecure_entry attribute, the GCC compiler will automatically manage the
generation of the Secure gateway section and linker will link it to the defined Non-Secure Callable region.

Important: When updating only the Secure project of an application that is flashed on the
target MCU, do not change the veneer function addresses. Any modification in veneer
addresses will lead to a misalignment between Non-Secure and Secure applications. This
would require a re-link to the Non-Secure application and to update the whole solution in the
SAM L11 Flash. Developers should ensure that the Secure gateways are linked to at a
permanent address.

Debug the Solution

When the device debug access level is set to two (full debug access), Atmel Studio 7 supports the full
debug of the Secure and Non-Secure projects allowing stepping through both projects and evaluating the
Secure to Non-Secure transition. The following steps illustrate the debug capabilities of the Atmel Studio
7 integrated development environment.

Wl
1. Power-up SAM L11 Xplained Pro, and then click or (Alt+F5) to start debugging, and
automatically break on the Secure main function.
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Figure 3-16. Start Debugging and Break on Secure Main Function
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2. Add a breakpoint on the return line of secure_func1 in the Secure project veneer. c file.
Figure 3-17. Breakpoint on secur_func1 Return (Secure Project)
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Add a breakpoint on the return line of func1 in the Secure project Secure Functions/secure.c
file.

Figure 3-18. Breakpoint on func1 Call (Secure Project)
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4. Add a breakpoint on the secure func1 call in the main function of the Non-Secure project (Non-

Secure main.c file).
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Figure 3-19. Breakpoint on secure_func1 Call (Non-Secure Project)
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5. Continue the debug by clicking 4 or press <F5>.
As a result of this process, the debugger should stop successively on:

5.1. The Secure function veneer call (Non-Secure project).
5.2. The Secure function veneer (Secure project).
5.3. The Secure function (Secure project).
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Figure 3-20. Break on secure_func1 Return
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A disassembly step-by-step debug is available by selecting the Debug > Windows >
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Figure 3-21. AS7 Disassembly Window
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Protect the Secure Application Using Debug Access Levels

In a dual developer deployment approach, it is important to protect the secure application from further
debugger accesses prior to delivering the pre-programmed chip to Customer B.

This can be done by changing the debug access level (DAL) to one. Changing the debug access level
can be done using the Device Programing Tool by following the steps below:

Close the debug session (if running).
2. Open the Device Programming tool by selecting the Tools > Device Programming.
3. Send the DAL1 command to the target SAM L11 Device:

3.1. Select the Programming tool and click Apply.

3.2. Select Memories.

3.3. Select Set DAL 1.

3.4. Click Change DAL

3.5. Verify that no problem is reported by the Device Programing tool.
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Figure 3-22. Changing DAL Using the AS7 Device Programming Tool

— = ———
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As a result, setting DAL to one (DAL1) prevents any future debug access to the Secure application
and requires a ChipErase All command to re-enable the access to the Secure memories (DAL2).
This can be tested by relaunching a debug session and running the code.
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Figure 3-23. Launch Failed Error on DAL Protected Area
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Important: Further development with the device requires the use of a standalone Non-
Secure project. Refer to the Create and Configure a Non-Secure Project (Customer B). A
ChipErase_ALL command (CE2) can be issued if the Secure application still needs to be
debugged.

Create and Configure a Non-Secure Project (Customer B)

In the Customer B context, the development starts with a preprogrammed SAM L11 device that contains
a DAL1 protected Secure application with predefined veneers.

It is mandatory for Customer A to provide some Non-Secure resource attribution descriptions, and Non-
Secure callable function API information to Customer B.

Ideally, the approach should be for Customer A to provide a Non-Secure project template to Customer B.
The following sections explain how to create and configure a Non-Secure project for a preprogrammed
SAM L11 device with a DAL1 protected Secure application.

Project Creation
To create the project perform these actions::

1. Open a new Atmel Studio 7 instance.
2. Select File > New > Project.
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3. Configure the new project in the New Project window:

3.1.
3.2.
3.3.
3.4.

Access the C/C++ tab.

Select GCC C Executable Project.

Enter details for Name, Location, Solution, and Solution Name.

Click OK.

Figure 3-24. SAM L11 Standalone Non-Secure Project Creation Under AS7
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4. Select the ATSAML11E16A device in the Device Selection window, and then click OK.
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Figure 3-25. SAM L11 Product Selection for New SAM L11 Standalone Non-Secure Project
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The result is the Non-Secure project appear in Atmel Studio IDE, see image below.

Figure 3-26. Standalone SAM L11 Non-Secure Project Under AS7
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3.2.2 Project Configuration
Prior to starting Non-Secure project development for SAM L11, it is mandatory to perform these actions:

»  Configure the project by aligning its linker file to the Secure and Non-Secure memories attribution
predefined by Customer A.
*  Add the Secure gateway library and veneer file and link them to the project.

3.2.2.1 Align Project Linker File to the SAM L11 Non-Secure Memories Attribution
The following illustration provides how to modify the Non-Secure solution project linker file according to
the following Secure and Non-Secure memory space.

00000 0000

Ox7CO00

APP_NSC

0x3000

Ox1 0000
FLASH

0x2000 0000
0x2000 2000

0x2000 4000

SRAM

Follow these steps to modify the Non-Secure solution project.

1. Open the project linker file: Device Startup/samlllel6a flash.ld.

© 2018 Microchip Technology Inc. DS70005365A-page 41



AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-27. Non-Secure Project Linker File Location
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2. Update the linker file memory space definitions according to the SAM L11 Non-Secure memory
attribution.

/* Memory Spaces Definitions */
MEMORY

{

rom (rx) : ORIGIN
ram (rwx) : ORIGIN
}

0x00008000
0x00002000

0x00008000, LENGTH
0x20002000, LENGTH
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Figure 3-28. Non-Secure Memory Address and Size Definition
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3.2.2.2 Add and Link the Secure Gateway Library to the Non-Secure Project
To add and link the Secure gateway library to the Non-Secure project, follow these steps:

Copy the Secure project implib inside the Non-Secure project.
Figure 3-29. Secure Gateway Library File Inclusion in Non-Secure Project Sources
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My SAM 111 Project.cproj 12118/2017 10408 ... ATMEL Studic 7.0 ..
ﬁ S —
| | securcapp-cmse-implib.lib 12/18/2017 1240 .., LI2 File

secureapp-amse-impliblib Date modifizd: 12/18/2017 12:40 PM Clate created: 12/19/2017 11:23 AM
LIB File Size: 316 bytes

Under Atmel Studio 7, right click on the Non-Secure project and select Properties.
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Figure 3-30. Access to Non-Secure Project Properties
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3. Add the Secure Project library by clicking the Add Item button in Toolchain > ARM/GNU Linker >

Libraries.

Figure 3-31. Add New Library to the Link Option
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4. Enter the library name.
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Figure 3-32. Adding Secure Gateway Library Name

F R

Libraries (-1}

secureapp-cmse-implib.lib

I |§ancel I

5. Add the Secure Project library path by clicking the add Item button in Toolchain > ARM/GNU Linker
> Libraries.

Figure 3-33. Add New Library Search Path
s peece =

Build

Configurstion: | Active (Debug) v] Platfanm: lAﬂiva{.ﬁ.RM] -
Build Events : i

Device

Teol & ‘i‘;“gﬁ””[':“”‘"‘“‘" * | [ARMGNU Linker = Libraries
Senera :

= jj Output Files Libraries (-1)

4 | ARMAGNU C Compiler
Advanced o General P libm o
':JPreprc-cessu'. secufeapp-cmse-implib.lib
O Symbols
T Directories
& Optimization
& Debugging

& Warnings 8 -

T Miscellanecus Library search path (-L) * J| SRR R
a [ ARM/GNU Linker ${ProjectDir)\Device_Startup

& General

T Libraries
I Optimization
5 Memary Sattings
T Miscallanasus
a [ ARM/GNU Assernbler
T General
T Debugging
4 _'jARM-‘GN'J Preprocessing Assen
O General
"W Surnhnde
m

6. Click on the “...” button to browse and select the location of the secure project implib. Select
"Relative Path" to ensure project portability.

Figure 3-34. Enter Relative Path to the Secure Gateway Library

Library search path (-L)

CAMy_SAM_L11 Project\My_SAM_L11 Project
| Relative Path

oK || Cancel | I
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7. Linker Libraries properties should be displayed as given in the image below.
Figure 3-35. Non-Secure Project Linker Libraries Configuration

wsami et = < IR

Build

Lonfiguration: [Artive [Debug) v] Platform: [Ar:tive (ARN) v]

Build Events

Toolchain Configuration Managzr...

Device

Tool
Packs

Advanced

4 [Z] ARM/GNU Common
_’-ﬂf General
jDutput Files

4 [Z] ARM/GNU C Compiler
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ARM/GNU Linker = Libraries

Libraries {-I)

"L] & | 5| &

libm
secureapp-cmse-implib.lib

g Symbols
[ Directories
[ Optimization
= Debugging
B Warnings
EH Miscellaneous
4 [Z] ARM/GNU Linker
[ General
=
j’Optimization
[ Memory Settings
[ Miscellaneous
4 [F] ARM/GNU Assermbler
[ General -

—s_ . .

Library search path (-L)

EEEEE

$(ProjectDir)\Device_Startup

4 m [3

8. Clcik N (Save button) to save the project settings.

3.2.2.3 Add and Include Secure Gateway Header File

To add and include a secure gateway header file, perform these actions:

1. Copy the Secure gateway header file from the Secure project to the Non-Secure project.
Figure 3-36. Secure Gateway Header File Inclusion in Non-Secure Project Sources

=S| x
@@' o= My SAM_LLL Project » My SAN_LL1 Project » - | 3 | Seanch My SAM_L11 Project =
Organiza = E Opan « Burn Mew folder HE |:|;| lﬁ
B MyVideos * Marms= - Date modified Type Size
& OneDrive
. Debug 12/19/2017 10:08 .. File Folder
. Foaming i e o
. Device_Martup 1271972017 1235 . File Folder
# Soved Garne ] ) _
ﬂ main.c 1271972017 10:08 .. i File 1 KB
[ Searches ) ) B - .
. | My _SAM_111_Project.componentinfoxml 127132017 10:08 . KWL File 10 KB
| l My_SAM_L11_Project.cproj 12192017 12:36 . ATMIEL Studio 7.0 ... B KR
18 Computer .

2L, Local Disk (¢
<% DVD RW Dri -

12/18/2017 11:05 ...

E  veneerh Date maodificd: 12/18/2017 1105 AM
H File Siz= B4E bytes

Date created: 12/9/2017 12:37 PM

2. Right click "Non-Secure project” in the solution explorer, and then select Add > Existing ltem.
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Figure 3-37. Secure Gateway Header File Inclusion in AS7 Solution Explorer
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* Unless recuired by appliseble lma or sgreed to in writing,
2

ot tmern
% mas wET

= | D 0Ewes | b DWamng || D OMesages | Baid « beeliforme -

Ao deeih ol Suppod priviesang

H Wy S0 11N Frepeed o Sbrreefiinmben {4 drpruale wer) feendadboce T P o B =
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3. Select the Secure gateway header file, and then click Add.
Figure 3-38. Secure Gateway Header File Inclusion in Non-Secure Project
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—

L "1 b Bace e
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& Cm Creied
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AML File

ﬂ'} File
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H File

\. Device_Startup
.. Debug

File name: veneerh

12/19/2007 1235 ...
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Filz folder
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Iv [ Cancel

4. Right click "Non-Secure project" in the Solution explorer, and then select Properties.
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Figure 3-39. Accessing Non-Secure Project Properties Under AS7
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5. In the Non-Secure project property window, select Toolchain > ARM/GNU C Compiler > Directories
and then click Add Item.

Figure 3-40. Adding New Compiler Directory to Non-secure Project

My _SAM_L11 Project” & X

Build
Configuration: | Active (Debug) | Platform: | Active (ARM) -
Build Events ' )
Toaolchain : Configuration Manaper
Device
A A al -

Teol 4 5] ARM/GNU Common ARM/GNU C Compiler = Directories

H General :
Packs - el bt #| Include Device Support Header Path (-I)
R 4 |3 ARM/GNU C Compiler 0 1 il e
Advanced I — — i I Include Paths (-]) E" 118 1l &

__{”'CP'O“‘HO-‘ - ${PackRepoDir)\arm\CMSIS\S.0. 1VCMSIS\Include),

S{PackRepoDir\AtmeNSAML11_DFAL0.3Rinclude

o Optimization
& Debugging
& Wamings
& Miscellaneous
# [#] ARM/GNU Linker
T General
& Libraries
_'-fC'p::m-z.al:-:m
& Memaory Settings
& Miscellaneous =
. m L

6. Click on the “...” button to browse, and then select the location of the veneer . h file. Select
"Relative Path" to ensure project portability and then click OK.
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Figure 3-41. Include Secure Gateway Library Path in Compiler Directory

F 5
e (N

Include Paths (-1)

CAMy_SAM_L11_Project\My_SAM_L11_Project

elative Path

| [

7. The Compiler Directories properties will be displayed as follows.
Figure 3-42. Non-Secure Project Compiler Directories Parameters
My_SAM_L11 Preject” & X

Build 4
Configunation: | Active (Debug) v|  Plattorm: [Active (aRM) -

Build Events
Device )
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& Genera —
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Advenced = o Genera a Include Paths (-) _IL | & | i | ¥ |

—-:1 Preproceccor ${PackRepoDirfarm CMSISS.0. 1N MSIS Include

[ Symbos $(PackRepoDirfitmeNSAMLLL_DFP\1.0.66\include

I Directories = .

& Optimization

[ Debugging

& Warnings

& Miscellaneous

o [H] ARM/GNU Linker

[ Genera

5 Libraries

& Optimization

o Memary Settings

& Miscellaneous

4 [# ARM/GNU Assembler
]_'L—enera -
-' m. ¥
8. Press

(Save button) to save the project settings.

9. Add the following line at the beginning of the main. c file to include the Secure gateway library:
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10.

11.
12.
13.

Figure 3-43. veneer.h Inclusion in Non-Secure Project main.c File
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[ > t = He % @1 I
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b =d Dependencies
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J liben
J secureapp-cme-impilih b
4 [ Device_Statup
samillelba Nashid
= samillelfa_srarmld
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< syshern saendl] e

IR ¢ ornand Window

= Benls . S g
while {1} n vengerh
t
0 %
Brerbist * 3%
Enbire Soluten v | €3 OEmers | | OWamings | ) 0 Messages || Build = lntelldence -
Deseription egect File Lirse

Click

+
Click k&= (Build Project button).

(Save button) to save the modification to the main. c file.

Verify that no error is reported by the build process.

Launch debug session and confirm it is working.

Important: This requires the previous Secure application to run, if not the application will
hang and do not jump to the Non-Secure one.

Figure 3-44. Non-Secure Project Successful

Output

Show qutput froms | Build -

make: Mothing to be done for 'all'.
Done executing task "RunComoilerTask®.
Task "RunOutputFileVerifyTask"
Frogrom Memory Usage 2168 bytes
Data Memory Usage 16D bytes
Done sxecuting task "RunDutputfileWerifyTask'.
Done building target "CoreBuild” din project "My SAM L1l Project.cproj”.
Target "PostBuildEvent" skipped, due to false condition; ('3{PostBuildEvent)’

3.2 % Full
13.2 & Full

pone bullaing target "Bufld~ in project “My_SAM_L11 Project.corof~.
Done building project "My_SAM_L11_Project.cproj”.

Build succeeded.
---------- Build: 1 succeeded or up-to-date, @ foiled, @ skipped ==m=e=ses=

Build

1= "'} wes evaluated ms (' 1= '').

Target "Build™ in file "C:\Program Filec (x86)\Atmel\Studio\7.@\Vs)Avr.comnmon.targats” from prodect ~C:lMy_SAM L1l ProjectiMy_SAM_L11_Project'My_SaM_L11 Projact.

14. Launch the debug session and check the project is working.
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Important: Debugging the Non-Secure project requires a compatible preprogrammed
Secure application that configures and starts the Non-Secure execution. If this Secure
application is not present on the chip, the debug process will hang.
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How to Define and Use Secure and Non-Secure Peripherals

TrustZone for ARMv8-M Extension to Integrated Peripherals
The SAM L11 extends the concept of TrustZone to the ARMv8-M memory partitioning.

The management of the peripheral security attribution is done through the Peripheral Access Controller
(PAC).

Each peripheral security attribution is defined by programming their related User Row (UROW) fuse.

During Boot ROM execution, the NONSECXx fuses from the NVM User row are copied in the PAC
peripheral NONSECXx registers so that they can be read by the application.

Figure 4-1. PAC.NONSECx Register Description

OSCIZKCTR

70 GCLK SUFC QOSCCTRL RETC MCLK PM PAG
L
NONSECA 158 AC PORT FREQM ElC RTC WDT
2316
3124
70 HMATRIXHS DMAC NVMCTRL DsuU IDAU
158
NONSECE
2316
3124
70 ADC TC2 1 TCO SERCOMZ  SERCOMI SERCOMO EVSYS
158 TRAM OPAMP CCL TRNG PTC DAC
NONSECC
23:16
31:24

Important: The peripherals security attribution cannot be changed during application run-time.
Any changes to the User Row fuses require a reset of the SAM L11 device.

Peripherals can be categorized in three groups depending on their PAC security attribution and their
internal secure partitioning capabilities (standard/mix-secure):

* Non-Secure peripheral: A standard peripheral configured as Non-Secure in the PAC. The security
attribution of the whole peripheral is defined by the associated NONSECx fuse set to one. Secure
and Non-Secure accesses to the peripheral are granted.

»  Secure peripheral: A standard peripheral configured as Secure in the PAC. The security attribution
of the whole peripheral is defined by the associated NONSECx fuse set to zero. Secure accesses
to the peripheral are granted where Non-Secure accesses are discarded (Write is ignored, Read
0x0), and a PAC error is triggered.

*  Mix-Secure peripherals: The SAM L11 embeds five mix-secure peripherals, such as PAC,
NVMCTRL, PORT, EIC and EVSYS, that allow part of their internal resources to be shared
between the Secure and Non-Secure applications:

— When a mix-secure peripheral is secured (NONSECXx fuse set to zero), the Secure world can
allocate internal peripheral resources to the Non-Secure world using dedicated registers.

© 2018 Microchip Technology Inc. DS70005365A-page 52



4.2

421

ANS365

How to Define and Use Secure and Non-Secure Periph...

— When a mix-secure peripheral is Non-Secure (NONSECXx fuse set to one), the peripheral
behaves as a standard Non-Secure peripheral. Secure and Non-Secure accesses to the
peripheral register are granted.

Note: For additional information, refer to the "Security" Chapter of the SAM L11 Family Data Sheet.

Peripherals Interrupts Handling

The code examples given in the following section shows how to allocate a Non-Secure handler and set
the interrupt priority of a specific interrupt vector.

Non-Secure Interrupt Handling

Secure: main.c ordriver.c

/* Set EIC EXTINT[1l] Interrupt as Non-Secure at core level */
NVIC SetTargetState (EIC_ 1 IRQn);

/* Set EIC EXTINT[1l] as Non-Secure interrupt (Mix-Secure Use) */

EIC SEC->NONSEC.reg = (EIC NONSEC EXTINT (1<<1));
EIC SEC->NSCHK.reg = (EIC_NSCHK EXTINT (1<<1));

Non-secure: main.c ordriver.c

/* Enable Interrupt at peripheral level*/
EIC->INTENSET.bit.EXTINT = EIC _INTENSET EXTINT (1<<1);

/* Enable EXTINT[1l] Non-Secure Interrupt */
NVIC EnableIRQ(EIC 1 IRQn);

Non-Secure main.c or driver.c or interrupt.c

/* Enable EXTINT[1l] Non-Secure Interrupt */
void EIC_1 Handler (void) {

/* Clear EIC EXTINT[l]interrupt flag */
EIC->INTFLAG.reg |= EIC_INTFLAG_EXTINT(1<<1);

.
The following figure displays the automatic clear of the CPU registers on the Secure to Non-Secure
handler transition:

Figure 4-2. Cortex-M23 Interrupt Mechanism

Run secure

code

Push Core registers

Pop Core registers Zero Core registers

Switch to secure Switch to Non-secure

Run Non-secure
Handler

Retum from Handler

Follow these steps for Interrupt Mechanism:
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1. Processor status prior to Non-Secure interrupt.
Figure 4-3. CPU Registers Filled with Pattern in Secure Application
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2. Processor status during Non-Secure interrupt handler execution.
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Figure 4-4. Register Cleared Prior to Execute Non-Secure Interrupt Handler
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Processor status during Non-Secure interrupt handler execution.
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Figure 4-5. Automatic Pop of Register Content When Back to Secure World
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How to Use Non-Secure Peripherals

When a peripheral is allocated to the Non-Secure world, both Secure and Non-Secure applications can
access the peripheral registers.

At the Non-Secure world level, TrustZone for ARMv8-M considerations are totally transparent for the
developer. On the secure world side, the application should ensure that all the system resources required
by the peripheral are preconfigured or available to the Non-Secure world, such as PORT I/O, NVIC, DMA,
EVSYS, and so on.

Non-Secure Timer Counter 0 (TCO) Peripheral Use Case Example
This section provide an example of a Non-Secure TC use case.

In this use case, the Secure project is in charge of allocating PORT and TC peripherals to the Non-
Secure world, setting system clocks, and then jumping to the Non-Secure application.

The following figure displays the flowchart for the use case.
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Figure 4-6. Secure Main Routine Flow Chart
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Secure main.c

The key software aspects of the Secure code are as follows:

© 2018 Microchip Technology Inc.

DS70005365A-page 57



ANS365

How to Define and Use Secure and Non-Secure Periph...

*  TCO allocation to the Non-Secure world in fuses definition (define USER_WORD_6 as 0x00000010
in Secure application).

/* USER WORD X: User Row (UROW) Word X definitions */

#define USER WORD_0 0xBO8F437F /* BOD, Watchdog and Misc settings */

#define USER WORD_ 1 OxFFFFF8BB /* Watchdog and Misc settings */

#define USER WORD 2 0x40082080 /* Memories Security Attribution: AS = 0x80, ANSC = 0x20,
RS = 0x40 */

#define USER WORD 3 OxFFFFFFFF /* User Row Write Enable */

#define USER WORD 4 0x00000000 /* Peripherals Security Attribution Bridge A (NONSECA) */
#define USER WORD 5 0x00000000 /* Peripherals Security Attribution Bridge B (NONSECB) */
#define USER WORD 6 0x00000010 /* Peripherals Security Attribution Bridge C (NONSECC) */

»  TCO peripheral clock configuration and interrupt allocation to the Non-Secure world (Secure
application).

/* Secure main () */
int main (void)
{
uint32 t ret;
funcptr_void NonSecure_ ResetHandler;

/* Initialize the SAM system */

SystemInit ();
/* Configure TCO peripheral clock channel */
GCLK->PCHCTRL[14] .reg =(GCLK PCHCTRL GEN (0) | //
GCLK_PCHCTRL CHEN); // Enable Generator

/* Allocate PAO7 (LED pin) to Non Secure world */
PORT SEC->Group[0] .NONSEC.reg = (PORT_PAQ7);

/* Allocate TCO interrupt to Non-Secure world*/
NVIC SetTargetState (TCO IRQn);

/* Set Non-Secure main stack (MSP_NS) */
__TZ set MSP NS (*((uint32 t *) (TZ START NS)));

/* Get Non-Secure reset handler */
NonSecure ResetHandler = (funcptr void) (*((uint32 t *) ((TZ START NS) + 4U)));

/* Start Non-Secure state software application */
NonSecure ResetHandler () ;

while (1)
{

_NOP();
}

This Non-Secure application illustrates the use of a Non-Secured TC and I/O port by generating a PWM
signal on the PAQ7 pin.

The following figure illustrates the flowchart of this process.
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Get interrupt status

Initialize PAO7
as output
|
Initialize and enable TCO

Set PAO7 output
level to 1

Increment TCO Compare <
0 Value
I

Set PAO7output
level to 0

-+

Non-Secure main.c

Figure 4-7. Non-Secure Main Routine Flow Chart

Non-Secure

Non-Secure

Main routine

—

The TCO peripheral and PORT PAQ7 are allocated to the Non-Secure world. The Non-Secure application
can access them as standard peripherals without interaction with the Secure world.

How to Use Secure Peripherals

When a peripheral is allocated to the Secure world, only Secure accesses to its registers are granted,
and interrupt handling should be managed in the Secure world only. Two different software development
approaches can be followed depending on the software interaction requirements between Secure and
Non-Secure projects to use this peripheral.
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Driving Secure Peripheral Without Non-Secure SW Interactions

When working with peripherals that do not require specific interaction with the Non-Secure world, the
Secure world will drive them as a standard peripheral without any specific TrustZone for Cortex-M
considerations.

Driving Secure Peripheral With Non-Secure SW Interactions
If interactions between Non-Secure and Secure worlds are required to drive the Secure peripheral, the
Secure application must provide Non-Secure callable APIs and callbacks to the Non-Secure world.

Non-Secure Callable APls

The Secure gateway decouples the addresses of the Non-Secure callable APIs (stored in NSC regions)
from the rest of the Secure code. All the project Secure gateways are expected to be placed in NSC
memory, where all other code from the Secure executable is expected to be placed in the Secure memory
regions. This limits the amount of code that can potentially be accessed by the Non-Secure state. This
placement is under the control of the developer.

Figure 4-8. Non-Secure Callable APIs Mechanism
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- — D " e = — e
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Branch (BL) 56 Branch (BL)
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. :
| |
| |
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I |
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b

(
|
|
|
|
|
|
|
|
\

Refer to the Secure and Non-Secure Functions Call for more details.

Non-Secure Software Callbacks
The Secure project should define and use software callbacks to execute functions from the Non-Secure
world. This is a consequence of separating Secure and Non-Secure code into separate executable files.

© 2018 Microchip Technology Inc. DS70005365A-page 60



ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-9. Non-Secure Software Callbacks Flow Chart
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The management of callback functions is done using the BLXNS instruction. The following figure and
code illustrate the process.
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Figure 4-10. Non-Secure Software Callback Mechanism
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Note: A wrong use of pointers can lead to security weakness by enabling execution of any Secure
functions by the Non-Secure code. To overcome this disadvantages, ARM provides a set of CMSE
functions based on the new Cortex-M23 TT instructions.

In the previous figure, the CMSE function, cmse_check_pointed_object, is used to return the Secure state
of a specific address based on the product Secure memory attribution.

4.4.2.3 Secure Timer Counter 0 (TCO) Peripheral Use Case
This section provides an example of a Secure TC use in Secure and Non-Secure world . In this use case,
the Secure project is in charge of configuring system resources and managing the TC peripheral.

It provides specific TCO APIs and Non-Secure callbacks to the Non-Secure world. The following figure
displays the secure main function flowchart:
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Figure 4-11. Secure Main Routine Flowchart
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Secure main.c

The following APIs or veneers are provided to Non-Secure world to drive TCO peripheral from Non-

Secure world:

e tcO0 compare 0 interrupt callback register (secure void cb t pfunction);

e tcO0 overflow interrupt callback register (secure void cb_t pfunction);

e tcO0 init(void);

e tcO0 _set duty cycle(uint8 t duty cycle);
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The Non-Secure makes use of secured TCO through APIs/veneers provided by the secure world and
generates a PWM signal on PAQ7 pin. The following figures display the flowcharts of the application and
the interaction with the secure world.

Figure 4-12. Non-Secure Main Routine Flow Chart
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Figure 4-13. Secure TC Handler Flow Chart
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How to Use Mix-Secure Peripherals

The SAM L11 embeds five Mix-Secure peripherals, which allow part of their internal resources to be
shared between Secure and Non-Secure worlds.

The complete list of SAM L11 Mix-Secure peripherals and their shared resources are as follows:

Peripheral Access Controller (PAC): Manages the peripherals security attribution (secure or non-
secure).

Non-volatile Memory Controller (NVMCTRL): Handles Secure and Non-Secure Flash region
programming.

I/O Pin controller (PORT): Supports individual allocation of each 1/O to the Secure or Non-Secure
applications.

External Interrupt Controller (EIC): Supports individual assignment of each external interrupt to the
Secure or Non-Secure applications.
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* Event System (EVSYS): Supports individual assignment each event channel to the Secure or Non-
Secure applications.

Refer to the Chapter "ARM TrustZone Technology for ARMv8-M" of the SAM L11 product data sheet for
more details.

The capability for a mix-secure peripheral to share its internal resources depends on the security
attribution of that peripheral in the PAC peripheral (PAC Secured or Not PAC Secured).

4.51 Mix-Secure Peripheral (PAC Secured)

When a mix-secure peripheral is PAC secured (associated PAC NONSECx fuses set to 0), the peripheral
register is banked and accessible through two different memory aliases as shown in the following figure:

Figure 4-14. PAC Secured Mix-Secure Peripheral Registers Addressing

Peripheral Base Address

[PERIPH->xxx)
Non-Secure Alias

Peripheral Base Address + Offset

[PERIPH_SEC-zxxx)

Secure Alias Peripheral Registers

Logical addressing Physical addressing

The Secure world can then independently enable Non-Secure access to the internal peripheral resources
using its NONSEC register.

The following figure shows the External Interrupt Controller (EIC) NONSEC register.
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Figure 4-15. NONSEC Register

Name: NONSEC

Offset:  0x40 [ID-00000c8b]

Reset:  0x00000000
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Resat ] ] ] ] ] ] ] 0

The NONSEC register content can only be modified by the Secure world through the peripheral register
Secure alias (for example, EIC_SEC.NONSEC).

Setting a specific internal feature bitfield in the NONSEC register enables the access to the different
bitfields associated to this feature in the peripheral Non-Secure alias.

Mix-Secure Peripheral (PAC Non-Secured)

When a Mix-Secure peripheral is PAC Non-Secured (associated NONSECx fuses set to 1), the peripheral
behaves as a standard Non-Secure peripheral.

Secure and Non-Secure accesses to the peripheral register are granted. The Peripheral register mapping
is shown in the following figure:
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Figure 4-16. PAC Non-Secured Mix-Secure Peripheral Registers Addressing

Peripheral Base Address
{PERIPH->xxx)

Peripheral Register table

Reserved

Peripheral Registers

Logical addressing Physical addressing

Management of PAC Non-Secured, Mix-Secured peripherals at the application level is similar to the
management of a standard Non-Secure peripheral.

Refer to the How to Use Non-Secure Peripherals for more information.
Mix-Secure Peripheral (PAC Secure) Use Case
The Secure EIC use case displays an example of a Secure External Interrupt Controller (EIC) in use.

In the example, the Secure project is in charge of configuring system resources, allocating EIC interrupt
line 1 to the Non-Secure world and managing the external interrupt on Secured interrupt line 2. The
following figure shows the Secure main function flowchart.
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Figure 4-17. Secure Application Flow Chart
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In the example, the Non-Secure project is in charge of configuring and handling the EIC interrupt line 1,
which has been allocated to the Non-Secure world by the Secure application. The following figure
displays flowchart for this process:
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Figure 4-18. Non-Secure Application Flow Chart
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TrustRAM (TRAM)

The TrustRAM (TRAM) embedded in the SAM L11 offers a set of advanced security features for Secure
information storage:

* Address and data scrambling

»  Silent access

+ Dataremanence

* Active shielding and tamper detection

*  Full erasure of scramble key and RAM data on tamper detection

The TrustRAM example provided with this document illustrates the configuration of TrustRAM with
security features configured as follow:

* Address and data scrambling activated with key: OXCAFE

+  Silent access enabled

» Data remanence enabled

*  RTC static tamper detection enabled on PA8

*  Full erasure of scramble key and RAM data on tamper detection enabled

In this example, the TrustRAM content is displayed and refreshed every second on a Secure console
(USARTO) allowing user to experiment with static and dynamic tamper detections coupled with a
TrustRAM full erase.

Figure 5-1. Use Case Application Output

. COM23:115200baud - Tera Term o ——

Eile Edit Setup Control Window Help

Bxabab Bxabab Bxa%ab Bxabab Bxabab Bxabab Bxabab -
Bxabab Bxabab BAxabab Bxabab Bxabab Bxabab Bxabab
Axabhabh Axabah Axababh Bxabab Axa5ab Bxabab BAxababh
Bxabab Bxabab BAxabab Bxabab Bxabab Bxabab Bxabab
Axabhabh Axabah Axababh Bxabab Axa5ab Bxabab BAxababh
Bxabab Bxabab BAxabab Bxabab Bxabab Bxabab Bxabab
Bxabab Bxabab BAxab%ab Bxabab Bxabab Bxabab Bxabab

Truzt RAM content {1z refreshd

Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab
Bxabab Axabab Bxabab Bxab%ab BAxab%ab Bxa5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab

Bxabab Axabab Bxabab Bxab%ab Bxab%ab BxaS5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab
Bxabab Axabab Bxabab Bxab%ab Bxab%ab BxaS5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxab%ab Bxab%ab Bxa5ab Bxabab Bxabab

Trust RAM content {1z refreshl

BxA000 @xA08080 Bx000R BxBE0E OA000 BxB000 BxBBEBE OAE00
Bx0008 BxBE0A AxBA88 BxAPRR BxB000 OxA008 BxBH0E
Bx0008 AxBB0E BB BxBA00 BxB000 O«ARBE BxBH0A
Bx Bx
B Bx
B Bx
5 s Ax
B Bx =
i

L

The following flowchart illustrates the secure main function with TRAM:
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Figure 5-2. Use Case Application Flow Chart
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Cryptographic Accelerator (CRYA)

The SAM L11 embeds a hardware Cryptographic Accelerator (CRYA) with associated software functions
stored in Boot ROM which provide the hardware acceleration for:

* Advanced Encryption Standard (AES-128) encryption and decryption
*  Secure Hash Algorithm 2 (SHA-256) authentication
*  Galois Counter Mode (GCM) encryption and authentication

The CRYA example shown in the following figure illustrates the use of the CRYA for AES 128-bit key
length and the SHA-256 cryptographic algorithm.
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Figure 5-3. Use Case Application Output
(& COM23:115200baud - Tera Term VT (o o |

Eile Edit Setup Control Window Help

~== AES-128

Key : BxB8 B AxB 3 B =BS5S BxPh BxB7 BxBRE BxB? Bx BB xBc BxBd BxBe BxBF
AES-128 Plain text > £ xdd Bx55 Bxb6 Bx77 BxE8 chh Bxcc Bxdd Bxee BxFf
AES-128 cyphered text : BxbT Bxcd Bxeld Bxd8 Bxba BxYh BxB‘% Bx38 BxdB Bx Bxh? Bx80 Bx7TH Bxbd Bxch Bxha
AES-128 un-cyphered text : BxBB Bx11 Bx22 Bx33 Bx44 Bx55 Ox66 Bx77 BxB8 Bx99 Bxaa Bxhb Bxcc Bxdd Bxee Gxff

rl;uc t: ﬂa:h‘:"ld"‘?h? Bh')'ﬂdl’irﬂﬂ Bxa52e52d7 Bxda?dabfa BxcdB84efeld Bx7a53BBee BxYB8Bf7ac Bxelefcde? W

LS

The following figure shows the flowchart for this process:
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Figure 5-4. Use Case Application Flow Chart
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Data Flash

The Data Flash embedded in the SAM L11 offers a set of advanced security features for secure
information storage:

*  Data scrambling
«  Silent access to selected row (TEROW)
»  Tamper erase of selected row (TEROW) on tamper detection

The Data Flash use case shown in the following figure, illustrates the configuration of NVMCTRL for
secure Data Flash management:

«  Data scrambling activated with key: “0x1234”
+  Silent access enabled on first Data Flash ROW

Figure 5-5. Use Case Application Output

. COMA43:115200baud - Tera Term VT . .

R ——

File Edit Setup Control Window Help

##ﬂﬂﬂﬂﬂﬂﬂﬂ#ﬂﬂ#ﬂﬂ#ﬂﬂ#ﬂﬂﬂﬂﬂﬂﬂ###############
it DataFlazh use—case example i
##ﬂﬂﬂﬂﬂﬂﬂﬂ#ﬂﬂ#ﬂﬂ#ﬂﬂ#ﬂﬂﬂﬂﬂﬂﬂ###############
— Enable DataFlash security feature

— Erase TEROW

Ax48868
Ax48868

: AAAAARA ANABRAAA
H808RE0A ABRBREER
A8AAAARA ABAAAAAA
A8AERA0A ABRE0A0A
A8AHARAA ABREAEAA
A8AERA0A ABRE0A0A
A8AHARAA ABREAEAA
A8AERA0A ABRE0A0A

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page B4 M

Page Ax488004E AAAABAAA ARBBARBE

— Write BxCAFEDECA Pattern in TEROU

Print TEROW cuntent :

Page Bx480088 : CAFEDECA CAFEDECAH
Page Bx480082 CAFEDECA CAFEDECAH
Page Bx480004 CAFEDECA CAFEDECAH
Page Bx480086 CAFEDECA CAFEDECAH
Page Bx480008 CAFEDECA CAFEDECAH
Page Bx48088A0 CAFEDECA CAFEDECAH
Page Bx48008C CAFEDECA CAFEDECAH
Page Hx480AAE CAFEDECA CAFEDECAH
Page Bx480048 CAFEDECA CAFEDECAH
Page Bx4800842 CAFEDECA CAFEDECAH
Page Bx480044 CAFEDECA CAFEDECAH
Page CAFEDECA CAFEDECAH
Page CAFEDECA CAFEDECAH
Page CAFEDECA CAFEDECA
Page CAFEDECA CAFEDECAH
Page CAFEDECA CAFEDECAH

— Print TEROW cuftent :

Ax480@84 -
Bx480086 -
Bx480088 -
Bx48008a0 -
Bx48888C -
Bx480@AE -
B4 :
B4 H
B4 :
A H
Bx H
Ax H

Pk ke ok ek ek ek () (] ) () ) ) D

P kb ke ko ek ek (2 (] ) ) SR D
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The following figure illustrates the flowchart for this process:

Figure 5-6. Use Case Application Flow Chart
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Application Deployment with Secure and Non-Secure Bootloaders

The boot sections of the Flash memory allow the storage of Boot programs for a Secure and Non-Secure
application in a dedicated memory section, which is protected against the ChipErase_NS and
ChipErase_S commands.

Figure 6-1. SAM L11 Boot Sections

BOOT_S
BOOT_NSC
BOOT_NS

APP_S

APP_NSC

APP_NS

CMD CEx: NS S All

DATA_S

DATA_NS

CMD CEx: NS S All

The SAM L11 Boot sections are mainly designed to store In Application Programing solutions, such as
Secure and Non-Secure bootloaders. The following sections of this document explain the principle of
Secure and Non-Secure application deployment on the SAM L11.

Software Secure and Non-Secure Bootloaders Principle

A lot of modern embedded systems require application image updates to fix errors or support new
features. The main task of the software Secure and Non-Secure bootloaders is to download the
respective Secure and Non-Secure programs stored in the SAM L11 memories. This software makes use
of standard communication peripherals embedded in the product. This principle is called In Application
Programing, as it allows the software upgrade in-situ without the need of a SWD programming interface.
Firmware to be stored in the device can be sent by any host that is capable of communicating with the
SAM L11 through one of the interfaces supported by the software bootloader (i.e USART, TWI or SPI).
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Figure 6-2. Secure and Non-Secure Bootloaders
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SAM L11 Secure Boot

The SAM L11 Boot ROM is always executed at product startup. This software is ROM coded into the
device and cannot be avoided. Depending on the Boot Configuration Row (BOCOR) fuses setting, the
Boot ROM knows if a Secure boot code is used in the system. The Boot ROM then offers the possibility to
perform an integrity check or authenticate the firmware stored in the Secure Boot section prior to
executing it.

The verification mechanism provided in the Boot ROM is a key element to consider for ensuring root of
trust in the deployment and execution of Secure firmware.
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Figure 6-3. Verification Mechanism
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The Secure Boot code verification is done using the standard SHA256 hash algorithm that uses product
cryptography accelerator (CRYA). Both the Flash BS region and NVM BOCOR row hashes are computed
on row, and the memory area is defined by the BOOTPROT, BS and BSNC fuses.

Verification results are compared to their respective reference hash (256 bits/32 bytes) and stored by the
developer of the Secure bootloader in BOCORHASH fuses, and at the end of the Flash Secure Boot
section.

Figure 6-4. Boot Secure Reference Hash Location

0x00000000

BS

BS Reference Hash : 256bits (32 bytes)

BNSC

\J
BS * Granularity
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Any mismatch in the value will reset the device and restart the Boot ROM process if no debugger is
detected by the SAML11 Debug Service Unit (DSU) (reset loop with no Flash code execution). The
SAML11 will put the Boot ROM in Boot Interactive mode if a debugger is detected (This is done to issue
the ChipErase_ALL command to clear the whole device content and reprogram it).

If the verification result is equal to the reference hashes, the Boot ROM starts the Secure bootloader
execution.

The following figure shows the definitions of the fuses used for configuring Secure boot process.

Figure 6-5. Secure Boot Process Configuration Fuses

Bit Pos. Name Usage Factory Setting Related Peripheral
I Baserved Beserved Resarved Fesared
158 BS Boot Flash Secure Size = BS"0x100 0=0 DAL
21:16 BNSC Boot Flash Non-Secure Callable Size = BNSC*0x20 0x0 DAL
324 BOOTOPT Boat Opbon Oxal Boot ROM
332 BOOTPROT Boot Protection sive = BOOTPROT*0x100 Ox00 NVMCTRL
4?.4Hmmed Reserved Reserved
45 BCWEN Boot Configuration Write Enable Ox1 NVMCTRL
45 BCREN Boot Configuration Read Enable Ox1 MNVMCTRL
6350 Reserved Reserved Reserved Reserved
9564 BOCORCRC Boot Configuration CRC for bit 63:0 0xC1DTECC3 Boot ROM
127:96 ROMVERSION ROM Code Version Ox0000003A Boot ROM
255128 CEKEYD Chip Erase Key 0 All 18 Boot ROM
3B3:256 CEKEY1 Chip Erase Key 1 Al s Boot ROM
511384 CEKEY2 Chip Erase Key 2 All 1s Boot ROM
635512 CRCKEY CRC Keay All 18 Boot ROM
I B9S640 BOOTKEY Secure Boot Key All 1s Boot ROM l
1791:686 Reserved Reserved Ressrved Reserved
20471792 BOCORHASH Boot Configuration Row Hash All 13 Boot ROM

BOOTPROT, BS and BSNC: Defines the configuration of the boot section in product Flash. The size of
the Secure, Non-Secure and Non-Secure-Callable boot sections can be customized according to the
application need. These fuses are used for security memory allocation in product IDAU and for integrity
and authentication mechanisms when configured in the BOOTOPT fuse. Any change of the fuse setting
requires a reset to be considered by the device as only the Boot ROM is allowed to change IDAU setting.

BOOTOPT : Defines the type of verification to be performed as either Secure and Non-Secure.

. 0: No verification method
* 1: Integrity check SHA256
. 2: Authentication check SHA-256 with BOOTKEY

Note: The use of the Secure Boot Authentication feature has an impact on the product startup time.
Refer to the product data sheet for more information.

BOOTKEY: Stores the SHA-256 result to be compared with the result of the selected Boot ROM
verification method execution. This value should be calculated and stored in advance by Customer A.

Custom Secure Software Bootloader

When required by the application, a Secure software bootloader should be stored in the Flash Boot
secure region to benefit from the Boot ROM verification mechanism and ChipErase protection.
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Specific care should be taken when updating the Secure application using the bootloader. As the Secure
application may contain critical Secure code and data, the application firmware should not be vulnerable
to interception during the data transfer from the external source.

Note: Refer to the "Secure UART Bootloader for SAM L11" Application Note for additional information.

The following diagram shows general Secure bootloader execution steps:

Figure 6-6. Secure Software Bootloader Execution Steps

0x0000 0000
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BS x 0x100

BOOTPROT x 0x100

(BOOTPROT+AS) x 0x100
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Secure bootloader
(1)Check Entry
Secure bootloader
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Non secure Bootloader

Secure project

Secure project
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(2) Self-copy

(4) Update secure code

h (4) Update secure code

Secure bootloader

(3) Start communication
(5) Jump to secure code

SRAM (up to 16KB)

0x1F40 0000

Flash (up to 64KB)

The Software Bootloader Execution steps are as follows:

Bootloader Entry detection. Defines if the bootloader should be executed or not. For example, the
secure bootloader can run automatically if there is no valid application in the product secure
application, Flash memory region, and runs on the detection of an external request on a dedicated

Self copy to secure SRAM. As the Flash technology does not support the read-while-write
operation, and most bootloaders should have the possibility to update their own software, the
bootloader should be self-copied and executed from the SRAM. For this purpose the RXN (RAM is
eXecute Never) must be cleared in the device fuse setting.

Enable secure communication with host. Care should be taken at this step to not disclose critical
secure information, or allow unauthenticated host access to Secure bootloader features. Therefore,
it is recommended to manage host authentication, data encryption, and data integrity during the

Update secure code section. Decrypt and check the integrity of new code blocks sent by the host
and write them to the Secure memory regions.

1.
HW Entry pin.
2.
3.
transfer.
4.
5.

Jump to secure code. A reference software can be found in Secure UART Bootloader for SAM L11
application note, which is available for download at www.microchip.com.
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Custom Non-Secure Software Bootloader

When required by the application, a Non-Secure software bootloader should be stored in the Flash Non-
Secure region of the boot region for ChipErase protection. The software architecture of a Non-Secure
bootloader for SAM L11 is similar to the standard Cortex-M device bootloader.

This bootloader is executed prior to the Non-Secure application execution, and offers the possibility to
upgrade the Non-Secure application stored in the device.

The following figure shows standard Non-Secure bootloader execution steps.

Figure 6-7. Non-Secure Software Bootloader Execution Steps

0x0000 0000
Secure bootloader

BS x 0x100 — BNSC x 0x20 Secure bootloader

BS x 0x100 nsc (optional) (2) Self Copy to Non-Secure SRAM
Non-Secure Bootloader
BOOTPROT x 0x100 (1) Check BL Entry (4) Update Non-secure code

Secure project

(BOOTPROT+AS) x 0x100

— ANSC x 0x20 Non-Secure bootloader

Secure project

nsc (optional) (3) Start communication

(5) Jump to secure code

(BOOTPROT+AS) x 0x100

SRAM

Non secure Application

(4) Update Non-secure code

0x1F40 0000
Flash

Follow these Non-Secure bootloader execution steps:

1. Bootloader Entry detection: Defines if the bootloader should be executed or not. For example, the
Non-Secure Bootloader can run automatically if there is no valid application in the product Non-
Secure application Flash memory region, or run on detection of external request on a dedicated
entry pin. SSelf copy to secure SRAM:As Flash technology does not support the read-while-write
operation, and most bootloaders should have the possibility to update their own software, the
bootloader should be self-copied and executed from the SRAM. For this purpose the RXN fuse
(RAM is eXecute Never) from the UROW row must be cleared in the device fuse setting.

2. Enable communication with host.
3. Update Non-Secure code section.
4. Jump to Non-secure code.

The Secure boot can share functionality, such as communication protocol management with the Non-
Secure bootloader using the Non-Secure Callable boot region.

A reference software can be found along with UART Bootloader for SAM L10/ SAM L11 Application note,
which is available for download at www.microchip.com.
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The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

*  Product Support — Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

*  General Technical Support — Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

»  Distributor or Representative
* Local Sales Office
*  Field Application Engineer (FAE)
»  Technical Support
Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.

Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

*  Microchip products meet the specification contained in their particular Microchip Data Sheet.

*  Microchip believes that its family of products is one of the most secure families of its kind on the
market today, when used in the intended manner and under normal conditions.

*  There are dishonest and possibly illegal methods used to breach the code protection feature. All of
these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

*  Microchip is willing to work with the customer who is concerned about the integrity of their code.
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*  Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad 1/0, SMART-1.S., SQIl, SuperSwitcher, SuperSwitcher I, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
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Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®
DSCs, KEELOQ® code hopping devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.
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