MICROCHIP ANS365
SAM L11 Security Reference Guide

Introduction

This document explains the different security features available on the Microchip SAM L11 microcontroller
that fulfill the following security requirements of the most embedded systems:
» Software security, based on isolation of, and restricted access to certain data, resources, and code
* Physical security with anti-tampering and encrypted memory interfaces
» Communication security based on encryption, decryption, authentication algorithm, and strong key
management storage and provisioning

The following sections provide programming examples that illustrates the SAM L11 key features to fulfill
these requirements.

© 2018 Microchip Technology Inc. DS70005365A-page 1

ANS365

Table of Contents

INEFOAUCTION. ...t e e e e e e e e as 1
1. TrustZone for ARMv8-M Implementation in SAM L11... ..o, 4
1.1. Memory and Peripheral Security Attribution............ccooiiiiiiii 4
1.2. Secure and Non-Secure Code EXECULION.........ccuuiiiiiiiiiiiieiiiee e 5
2. Application Deployment Considerations.................cccccoi 10
2.1. Debug Access Level (DAL) and Chip Erase..........ccooveiiiiiiiiieiiiiic e 10
2.2, Customer A and CUSIOMET Bi..........oiiiiiiiiiiiie ettt 12
3. How to Develop a SAM L11 Application Under Atmel Studio 7...........ccovvevvvevveenenn. 15
3.1. Create and Configure a Secure Project (CUStomer A)..........oooi i 15
3.2. Create and Configure a Non-Secure Project (Customer B)...........ccoociiiiiiiiiiiiciii e 38
4. How to Define and Use Secure and Non-Secure Peripherals............cccccceiviiinnnee. 52
4.1. TrustZone for ARMv8-M Extension to Integrated Peripherals.............cocooiiiiiiiiiiiiieeee 52
4.2. Peripherals Interrupts Handling..........coooiiiiiiiii e 53
4.3. How to Use NoNn-Secure Peripherals.............coouiiiiiiiiiiiii ittt 56
4.4, How to Use Secure PeriPhEralS...........cooiiiiiiiiiiiiiiie ettt e e e e sarre e e e e e ennes 59
4.5, How to Use MiX-Secure PeripheralS..........ccouuiiiiiiiiii ittt e e 65
5. SAM L11 Security Features Use Cases..........cccuuuiiiiiiiiiiiiiiiiiiiie e 71
5.1, TrUSTRAM (TRAM). ..ottt et e et sttt e ettt et e e b 71
5.2. Cryptographic Accelerator (CRYA).......ooi it e e see et e e st e e e neeeeenneeeeaneeeas 72
5.3, DAta FIash.......ooo e 75
6. Application Deployment with Secure and Non-Secure Bootloaders........................ 77
6.1. Software Secure and Non-Secure Bootloaders PrinCiple...........ccccooiiiiiiieiiciiiiee e 77
6.2, SAM L11 SECUIE BOOL........eiiiieiiieee ettt 78
6.3. Custom Secure Software BOOtOader..............ooouieiiiiiiiiii e 80
6.4. Custom Non-Secure Software Bootloader.............ccccocuiiiiiiiiiiiieee e 82
The MiIcroChip WED Site.......uuiiiiiiieiieeeeeeeeeeeeee e 83
Customer Change Notification Service...........cccoeiiiiiii e, 83
L0101y (o]0 g [T RS 10T o] oL o FER PP PPPPPPPPPPPPPN 83
Microchip Devices Code Protection Feature............ccoooiiiiiiiiis 83
[I=To = | N o) 1o =TT POPPPPPPPPPR 84
L= 0 1= 0 =T 6 TP 84
Quality Management System Certified by DNV........coiiiiiiiiii e 85

© 2018 Microchip Technology Inc. DS70005365A-page 2

ANS365

WOrldwide Sales AN SeIVICE.o. ettt eeaaeaes 86

© 2018 Microchip Technology Inc. DS70005365A-page 3

1.1

AN5365
TrustZone for ARMv8-M Implementation in SAM L11

TrustZone for ARMv8-M Implementation in SAM L11

The central security element for the Microchip SAM L11 microcontroller is the implementation of the
ARM® TrustZone® for an ARMv8-M device. The TrustZone technology is a System-on-Chip (SoC) and
MCU system-wide approach to security that enables Secure and Non-Secure code to run on a single
MCU.

TrustZone for an ARMv8-M device is based on a specific hardware that is implemented in the Cortex®-
M23 core, which is combined with a dedicated Secure instructions set. It allows the creation of multiple
software security domains that restricts access to selected memory, peripherals, and I/O to trusted
software without compromising the system performances.

The main goal of the TrustZone for a ARMv8-M device is to simplify security assessment of a deeply
embedded device. The principle behind the ARM® TrustZone® for a ARMv8-M embedded software
application is illustrated in the following figure.

Figure 1-1. Standard Interactions Between Secure and Non-Secure States

Secure state
r-----------

System Start

i
User application [FUREHGR Call

.,
| N

| Function Call

~ _ 7 TrustZone
for Cortex-M

Memory and Peripheral Security Attribution

To differentiate and isolate Secure code from Non-Secure code, the SAM L11 memory is partitioned into
ten different memory regions as represented in the following figure. Each region size is configurable using
dedicated NVM fuses, such as BS, BNSC, BOOTPROT, AS, ANSC, DS and RS.

© 2018 Microchip Technology Inc. DS70005365A-page 4

1.2

AN5365
TrustZone for ARMv8-M Implementation in SAM L11

Figure 1-2. SAM L11 Memory Partitioning
0x0000 0000

BOOT_S

BS x 0x100 - BNSC x 0x20
BOOT_NSC Ox40 0000

BS x 0100
DATA_S
BOOTPROT x Ox100 DATA_NS
00040 0300
APP S DataFlash (2KB)

(BOOTPROT+AS) x Ox100
— ANSC x 0x20

(BOOTPROT+AS) x Ox100

02000 0000

RAM_S
(2000 0000 + (RS*0xB0)
RAM_NS
02000 4000

SRAM (up to 16KB)

Ox1F40 000D
Flash (up to 64KB)
* Non-Secure (NS): Non-Secure addresses are used for memory and peripherals, which are
accessible by all software that is running on the device.

» Secure (S): Secure addresses are used for memory and peripherals, which are accessible only by
secure software.

* Non-Secure Callable (NSC): NSC is a special type of Secure memory location. It allows software to
transition from a Non-secure to a Secure state.

The security attribute of each region will define the security state of the code stored in this region.

Secure and Non-Secure Code Execution

In the Cortex-M23 Core the security management is done with the IDAU interface. The IDAU interface
controls access to executing specific instructions based on the current core security state and the
address of the instruction.

© 2018 Microchip Technology Inc. DS70005365A-page 5

AN5365
TrustZone for ARMv8-M Implementation in SAM L11

Figure 1-3. IDAU Interface and Memory Accesses

Core/Debugger
access

Y

IDAU
Interface

Non-secure
MFU

Access to

MemorY Cortex-M23 S
' L11

Thanks to this implementation, a simple function call or an interrupt processing results in to be a branch
to a specific security state as illustrated in the following figure. This allows for efficient calling by avoiding
any code and execution overhead.

Figure 1-4. ARMv8-M With TrustZone States Transition

Non-Secure | ! Secure
Handler Handler
Mode Mode

Non-Secure . Secure

Thread Thread

¥ L s
Mode €8> Mode

ARMvE-M with TrustZone

1.21 Secure and Non-Secure Functions Call
To prevent Secure code and data from being accessed from a Non-Secure state, Secure code must meet
several requirements. The responsibility for meeting these requirements is shared between the MCU
architecture, software architecture and the toolchain configuration. A set of Secure instructions are
available to preserve and protect secure register values during the state transition handling. The Compiler
Security Extension (CMSE) provided by ARM allows the user to manage the use of these new ARMv8-M
Secure instruction sets on the Secure software side. Secure and Non-Secure function call mechanisms

© 2018 Microchip Technology Inc. DS70005365A-page 6

AN5365
TrustZone for ARMv8-M Implementation in SAM L11

are shown in the following figure. The following are key Secure instructions to handle for Secure or Non-
Secure function calls.

* Secure Gateway (SG): Used for switching from a Non-Secure to a Secure state at the first
instruction of a Secure entry point.

» Branch with exchange to Non-Secure state (BXNS): Used by the Secure software to branch, or
return to the Non-secure program.

» Branch with link and exchange to Non-Secure state (BLXNS): Used by the Secure software to call
the Non-Secure functions.

Figure 1-5. ARMv8-M Secure/Non-Secure Function Calls

Non secure Secure NSC

e — - - L

- 2 -
Brancll1 (BL) : SG Branch (BL)
1 1

| | 3
Beturnl[B}(NS)

Non Secure Secure

Secure API .
code Library

Branch (BLXNS)
|

Branch (BX)

/
|
|
|
|
|
|
|
|
|
1

A direct API function call from the Non-Secure to the Secure software entry points is allowed only if the
first instruction of the entry point is a SG, and is in a Non-Secure callable memory location, as shown in
the following figure. The use of the special instructions (BXNS and BLXNS) are also required to branch to
Non-Secure code.

The Secure gateway decouples the addresses of the Secure gateways (in NSC regions) from the rest of
the Secure code. All the project Secure gateways are expected to be placed in the NSC memory, where
all other code from the secure executable is expected to be placed in the secure memory regions. This
limits the amount of code that can potentially be accessed by the non-secure state. This placement is
under the control of the secure developer.

Any attempts to access secure regions from the non-secure code, or a mismatch between the code that
is executed and the security state of the system results in a HardFault exception. See the following figure.

© 2018 Microchip Technology Inc. DS70005365A-page 7

1.2.2

AN5365
TrustZone for ARMv8-M Implementation in SAM L11

Figure 1-6. Security State and Call Mismatch

Non secure Secure NSC Secure

MOV r@, #1@ DCD OxE97FE97F
MOVS r1, #0
MOVS r3, #1

MOVS r3, #1

rl, #result

Secure and Non-Secure Interrupts Handling

The Cortex-M23 (ARMv8-M architecture) uses the same exception stacking mechanism as the ARMv7-M
architecture, where a subset of the core registers is stored automatically into the stack (hardware context
saving). This permits immediate execution of the interrupt handler without the need to perform a context
save in the software. ARMV8-M extends this mechanism to provide enhanced security based on two
different stack pointers (a Secure stack pointer and a Non-Secure stack pointer).

According to the priority settings configured in the Nested Vector Interrupt Controller (NVIC), Secure code
execution can interrupt Non-Secure code execution, and Non-Secure code can interrupt Secure code
execution. The NVIC registers at the core level are duplicated. This allows two vector table definitions,
one for Secure and another for Non-Secure.

At product start-up, all interrupts are mapped by default to the Secure world (Secure vector table).
Specific CMSIS functions accessible in the Secure world, allocate each interrupt vector to a non-secure
handler (declared in Non-Secure vector table).

If the Secure code is running when a higher priority Non-Secure interrupt arrives, the core pushes all the
register content into a dedicated secure stack. Registers are then zeroed automatically to prevent any
information being leaved, and the core executes the non-secure exception handler.

When the Non-Secure handler execution is finished, the hardware recovers all the registers from the
secure stack automatically. This mechanism is managed in hardware and does not require any software
intervention. This allows a Secure handover from running Secure code to a Non-Secure interrupt handler,
and returning to running Secure code.

© 2018 Microchip Technology Inc. DS70005365A-page 8

AN5365
TrustZone for ARMv8-M Implementation in SAM L11

Figure 1-7. Cortex-M 23 Interrupt Mechanism

Run secure

Mon-secure interrupt
code

Push Core registers

Pop Core registers Zero Core registers

Switch to secure Switch to Non-secure

Run Non-secure

Retum from Handler Handler

© 2018 Microchip Technology Inc. DS70005365A-page 9

2.1

ANS365

Application Deployment Considerations

Application Deployment Considerations

The SAM L11 system architecture combined with TrustZone for the ARMv8-M is set to three different
access levels to the chip resources. Those levels depend on the Debug Access Level setting (DAL) of the
target SAM L11 device.

Debug Access Level (DAL) and Chip Erase
The SAM L11 has three configurable debug access levels (DAL), which restrict programming and debug
access to Secure and Non-Secure resources in the system.

* DAL2: Debug access with no restrictions in terms of memory and peripheral accesses

* DAL1: Access is limited to the Non-Secure memory regions. Secure memory region accesses are
forbidden.

» DALO: No Access is authorized except with a debugger using the Boot ROM Interactive mode

Note: Refer to the "Boot ROM" chapter of the "SAM L11 Data Sheet" for more details on Boot Interactive
Mode.

DAL is combined with three key protected ChipErase commands that provide three levels of NVM erase
granularity. The ChipErase command is used to increase the DAL level without compromising code
security (that is, erase of the code before changing to higher DAL level).

Figure 2-1. ChipErase Commands

BOOT_S
BOOT_NSC
BOOT_NS

APP_S

APP_NSC

APP_NS

CMD CEx: NS S All

CMD CEx: NS S All

© 2018 Microchip Technology Inc. DS70005365A-page 10

ANS365

Application Deployment Considerations

Important: The ChipErase commands (CMD_CEO, CMD_CE1, CMD_CE2 and
9 CMD_CHIPERASE) are only issued using the Boot ROM Interactive mode.

Figure 2-2. SAM L11 Configurable ChipErase Key Fuses

["] Bit L
P,
=00 70 Féiirms
Oailit 158 -4
Guil2 F2R L Resered BMC
1 e 24 BOOTORT
i) o e d BOOTPROT
a5 4740 Resared
Gutiel 548 Resenved BCREN BOWEN
OwlT 388 Awsereed
Qal8-JulE -5] BOCORCRC
CulC ¥ 12758 ROMVERTION
g [+T="3] 3 - b | CEKEYD
Cou 2Ll e b CEKEY1
0 3000 3F 511384 CEKEY2
Qe O Dol 512 m
Cabl-LulF S5 240 BOOTKEY
CuTO-IDF T Besereed
OnE0-LuFF 20471762 BOCORMASH

The DAL, ChipErase commands, and key fuses can be programmed to a SAM L11 target device using

the Atmel Studio 7 (AS7) Device Programming Utility, as shown in image below.

Figure 2-3. ChipErase Commands Under AS7 Device Programming

EDBG (ATMLOO00000000000001) - Device Prog [——
Tool Device Intexface Device signature Target VoRtage
EDBG = | ATSAMILLIEIBA = |SWD = || Apply (e M0E 30000 Fead 33V | Read| |3
Interface settings Device (DAL=)
Tool information Chaprase Monsecure ([CED) = | | Erase now
Dhevice informaticn CrapErase Secune (CEL)
Py CripErase All {CED) =l
Lot DALO .
Fuses: Set DAL 1 Fend...
Security w | Batheptiond
User Page (256 bytes)
~ el |
o] Erase User Page befoes programaning
| Verify User Page after programming =
» | Rdvanced
Reading dewice I 0K ‘
.
E—

© 2018 Microchip Technology Inc.

DS70005365A-page 11

ANS365

Application Deployment Considerations

Figure 2-4. ChipErase Key Fuses Setting Under AS7 Device Programming

2.2

EDBG (ATMLOOOOM0CO00000001) - Duenvice Programming
Teol Device Interface Device signatuse Target Valtage
EDBG = ATSAMLIIEIGS = [SWD = | |Apply| 020830000 Read| 33V |Read| 3
Interface settings Fuse Name Value
Toel infoxration 1 BOCOR_WORD_4.B00TROM_CEXEY)_O OxFFFEFERF
Derice Borastion #BOCOR_WORD_5.BOOTROM _CEKEYD_1 OFEEEFEFE
Moros:) BOCOR_WORD, 6. BD0TROM CEXEYD 2 P
Fuses @) BOCOR_WORD_7.B00TROM _CEKEYD_3 r—"
e ¥ BOCOR_WORD_8.BO0TROM_CEEEY]_O OxFEEFEREE
S BOCOR_WORD_§.BOOTROM _CEKEY]_1 OuFEEEEEEE
@ BOCOR_WORD_10.BO0TROM CEKEY] 2 P
) BOCOR_WORD:_11BOOTROM (CEKEYL 3 T
Copy to clipboard
¥ Auto read %
7| Verify sfter progeamming Pregenm WVerify Resd
........ e R TP LR,

Reading register USER_WORD_3...0K
Reading register USER_WORD_4...0K
Feading register USER_WORD_5...0K
Reading register USER_WORD_6...0K
Fead registers 0K

E Read registers..OK

The following figure illustrates the use of Set DAL and ChipErase commands during the SAM L11 project

deployment.

Figure 2-5. SAM L11 DAL and ChipErase Mechanism

Delivered parts

P

_» 1) Program NVM regions | Afer Reset s
2) Send SDAL1 command (NVMCTRL) ~——— -~

ChipErase_S - -

’ T - ‘with CEKEY1 key - -
v

- ChipErase_ALL -
with CEKEY2 key —
., o
H"‘x. ~ -

Customer A and Customer B

The combination of the system Set DAL and ChipErase with TrustZone for Cortex-M architecture allows
two deployment approaches: A single-developer approach (Customer A) and a dual-developer approach
(Customer A + Customer B).

© 2018 Microchip Technology Inc.

DS70005365A-page 12

2.21

2.2.2

ANS5365

Application Deployment Considerations

Single-Developer Approach
In single developer approach, the developer (Customer A) is in charge of developing and deploying
Secure and Non-Secure code. The application of Customer A can be protected by using DALO.

Figure 2-6. Single Developer Approach

Blank L11 Final Application

, : Customer
Microchip b A - End-User

DAL : 2 DAL:0

Dual-Developer Approach

In this approach, the first developer (Customer A) is in charge of developing the Secure application and
its associated Non-Secure callable library (. 1ib/.h), and providing a predefined linker file to the second
developer (Customer B). This Secure application is then loaded in the SAM L11 NVM and protected using
the set DAL1 command to prevent further access to the Secure memory region of the device.

A second developer (Customer B), will then start his development on a preprogrammed SAM L11 with
limited access to secure resources (call to Non-Secure API only). To do so, Customer B will use a linker
file and the NSC library provided by customer A.

© 2018 Microchip Technology Inc. DS70005365A-page 13

ANS365

Application Deployment Considerations

Figure 2-7. Dual Developer Approach

Blank L11

Secure Pre-programed
L11 / Modules

Final Application

Microchip =N

Customer
A

=
>

Customer

B b End-User

DAL : 2

Linker file

NSC library (lib/.h)

DAL : 1

DAL : 0

The following sections of this document describe the application development and deployment process to
be implemented for both Customer A and Customer B sides.

© 2018 Microchip Technology Inc.

DS70005365A-page 14

3.1

3.1.1

AN5365
How to Develop a SAM L11 Application Under Atmel S...

How to Develop a SAM L11 Application Under Atmel Studio 7

When starting development on the SAM L11, Customer A and Custoemr B should follow two different
approaches as the SAM L11 system architecture, combined with TrustZone for ARMv8-M, sets two
different access levels to the chip resources, such as debug, memories and peripheral.

Atmel Studio 7 integrated development platform provides a full set of advanced features to accelerate the
development of a SAM L11 application. The following sections illustrate the approaches to be followed by
Customer A and Customer B to create, customize, and debug their application.

Create and Configure a Secure Project (Customer A)

To help Customer A (regardless of single or dual developer approaches) start with the SAM L11, Atmel
Studio 7 provides a predefined Secure Solution template that illustrates basic Secure and Non-Secure
application execution. This template can be used to evaluate and understand the TrustZone for ARMv8-M
implementation in the device, or as a start-up point for custom solution development.

This section describes the following aspects of a secure solution development:

* How to create, build, and debug a new solution for the SAM L11 under Atmel Studio 7
» Secure solution template architecture overview

Create and Build the Solution
To create and build Secure Solution template follow these steps:

1. Open Atmel Studio 7.
2. Select File > New > Project....
3. Configure the new solution in the New Project window:
3.1. Clcik the C/C++ tab.
3.2. Select SAM L11 Secure Solution.
3.3. Enter Name, Location, and Solution Name, and then click OK.
4. Create a new SAM L11 solution.

© 2018 Microchip Technology Inc. DS70005365A-page 15

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-1. Create a New SAM L11 Solution Under AS7

b Recent Default 2 Search Installed Templates (Ctrl+E} P-

4 Installed .
GCC C ASF Board Project Type: C/C++
C/C++ Creates an Atmel Studio TrustZone-based
Assembler GCC € Executable Project Solution which contains aS.eturz project
. as well as a Non-Secure project that call
AtmelStudio Solution back into each other.
GCC C Static Library Project

GCC C++ Executable Project

GCC C++ Static Library Project

SAM L11 Secure Solution v1.0

Create project from Arduine sketch

MName: My_SAM_L11_Selution

Location: i - Browse...

Solution name: My_SAM_L11 Sclution Create directory for solution

5. The SAM L11 Secure Solution should appear as shown in figure below.
Figure 3-2. SAM L11 Secure Solution Under AS7

E My_SAM_L11_Solution - AtmelStudio (Administrator) Standard Mode "X Quick Launch (Ct P - B x
File Edit View WAssist{ ASF Project Build Debug Tools Window Help

Lo B-4 o-2 B XF 0|90 | b M Debug ~| Debug Browser ~ | £
: Pt @i He B :

maine ¥ X main.c * | Solution Explorer >R X

| GWATSAMLIIEIGA | SWDonEDBG -

= C:\My_SAM_L11_Solution\My_SAM_L11_Solution\NonSecureAppimain.c ~ ?GO m| - EH = [3]
=TT} +
il earc] Explorer (Ctrl=%) =
* Copyright (c) 2817 Microchip Technology Inc. QR Scch S ohiion Caplover [Ty 2
= —f &l Solution 'My_SAM_L11_Solution’ (2 projects)

Fl MonSecureApp
d Dependencies
=4 Output Files

P =5 Libraries

* SPOX-License-Identifier: Apache-2.9

Licensed under the Apache License, Version 2.8 (the "License"); you may
not use this file except in compliance with the License.

* You may obtain a copy of the License at b — De‘f“"‘—Sta"”P
* < main.c

* http://www.apache.org/licenses/LICENSE-2.8 i veneer.h

" 4 || SecureApp

* Unless required by applicable law or agreed to in writing, software =i Dependencies

®

distributed under the License is distributed on an AS IS BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

* limitations under the License.

“d Output Files
I+ . Libraries
b 3 Device_Startup

*

- b Secure_Functions
) C) main.c
©| veneer.c
#include "sam.h” n veneerh

#include "veneer.h”

yolatile jot wall, valz:

Output v 42X
Show output from: General - [=
17:14:54: [WARNING] Skipping add file C:\My_SAM_L11_Solution\My_SAM_L11_Solution\SecureApp\main.c -

17:14:57: [WARNING] Skipping add file C:\My_SAM_L11_Solution\My_SAM_L11_Solution\MonSecureAppi\main.c

Output

Re:

© 2018 Microchip Technology Inc. DS70005365A-page 16

AN5365
How to Develop a SAM L11 Application Under Atmel S...

7.

Note: The secure Solution Template processing will generate two warnings dues to override of the
main files from both Secure and Non-Secure. The user should not consider these warnings.

From the Build menu, select Build Solution (F7) to build the full solution.

Figure 3-3. Build Solution Under AS7

B Wy S 111 _Sclukion - AtmelStucka (Administrator Standard Mode 1 | Cuick Launch [« = -

File Edit Yiew VAssistd ASF Propect | Build Debui Took Window Hel
P P SN e —— T Flisw|wm|maa

P om | 3 TN [e cebeAET b | G L amATSAMILIEISS § SWD on EDBG (ATMLODOOKONIONNI0L -
Claan Sokiion
= = 1= &% Build MonSec urafdpp
n - ink main| .
- EAFANTIES 0% CORELTION f:‘:': ‘ Rebuild NorSeourehop . ﬁ brab # —
* Sze the License far the specifi Clean Nonfaourefpp arch Solution Explorer (Cti+5) o~
¥ limitations wnder the Licansa. Batch Build... AN Solugion Wy SAbd L11 Sokdion’ [2 projects]
x
.y Configuration Manager .. * N rl“:f;;:tﬁ:u
Compike s F7 ¥l Sntput Files
#include "zam. h” b lad Librarss
#incluge “weneer.h” b [Device Skartup
. maine
wolatila imt wall, wall; »
g wenssrh
e Fl Securchpp
* felated User Bow Fuae bits for this exemple; . ¥ [Dependendes
- — b [Output Files
- OHSC = B2 b o Libranes
" RS = Budd P [Dwwice Stamup
b [Secwe Functions
6 Mans
% Wan-secure maing] & veneens
int medm(vodd) n venesrh
i
J* Call non-secwre callsble functiom securs furcl =/ v
W% v A 3 Froperties Aveilsble Took R ITYSIIEY

Dhtput
Shecr putput From: Debog - = |

QST Erroe List Find Results1

Ensure that no errors are reported in the output window.

© 2018 Microchip Technology Inc.

DS70005365A-page 17

3.1.2

3.1.21

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-4. Build Output Succeeded

EJ v saminl Solution - ArmelSeudio (Administ o) stande Miade SEL| Quick Launch (G- Q) Al - B =
Eibke Edit Niew VAssistd ASF Proect Build [ebug Jook Wiindow Help
i - |i3"ﬂ LRl BT A | S P Hl Debug *| Debug Browser - A |.q"ﬂ:
MG 3 F- Her % | g~ ¢ L o ERATHAMLIEGS § SWD on EDDG (ATMLMD000MNL
¥ misin =~ M= int mainlvoid) =|¥*Go & m- @ -
T WARRAWNTIES OR COMDITIONS OF AHY EIND, either ar isplied. = N
* Zma the Licenze for the cpecific langusge governing permizsions and o fl° Solution Explarer [Chils P
= limitations umder the Licensse. Tl Solution By S4M_111 Sobdien’ 2 projects) -
N 4 MonSezureipp
P zd Depenidencies
: - " b e Curiprt Files
ginclede _'--m h) b Limsries
#include “vercer.h b L Device Startup
velatile int wall, vall; & men.
I vereerh
4 SecureAgp
. example = B Dependoncien
b @ Oulput Rles
Bl Lbmiies
B[4 Desice Startup
* P [Secure Functions
< mging
#* Mom-secure mednf) */ <] veneerc
int main[void] - I -
bk =i ¥ Propesties Swailable Tools Rl d i)
Cutpue O
. - o -
Bulld succasdad. -
memmmmmems fBuild; succeeded or wp-to-dote, @ foiled, 9 akipped ==========
*

This solution is the starting point for any bare-metal development on the SAM L11 device.

SAM L11 Secure Solution Architecture

The SAM L11 Secure Solution Template is composed of preconfigured Non-Secure and Secure projects.
The project configuration aspects related to TrustZone for ARMv8-M implementation are already
implemented to facilitate the development process.

Non-Secure Project
The Non-Secure project is a standard application that runs in Non-Secure world.

This application can make use of all the system resources allocated to the Non-Secure world. It can also
call predefined Non-Secure Callable (NSC) functions defined in the veneer . h file, which are provided by
the Secure application.

The Non-Secure project architecture is shown below.

© 2018 Microchip Technology Inc.

DS70005365A-page 18

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-5. Non-Secure Project Architecture

Non-Secure linker files: Contains link configuration for the
Non-Secure application

Non-Secure Startup file: Contains the Non-Secure vector table
and the Non-Secure Reset Handler

Non-Secure System file: contains the system init function in
charge of Non-Secure system resources configuration (Clock,
|0s, etc. ...).

Non-Secure Main file: contains the Non-Secure application
main function.

4 MNonSecureApp
=d| Dependencies
=d| Output Files
b [-=] Libraries
4 | Device_Startup
[} samillel6a_flash.ld
[samllleléa_sram.ld /
c| startup samlllelba.c
c system_samlllelba.c

¢ main.c [

fm veneer.h —"

Veneer header: Link to the veneer header file that contains

BRSNS

the definition of secure gateways declared by the Secure
project.

3.1.2.2 Secure Project
The Secure application project is in charge of the following applicative aspects:

» Initialization of the system security and resources attribution (memories as peripherals)
» Execution of the Secure functions or drivers
+ Call to the Non-Secure application (main function)

Figure 3-6. Secure Project Architecture

4 SecureApp

=d| Dependencies

4 Output Files Secure linker files: Contains link configuration for the Secure

b = Libraries application
4 [Device_Startup Secure Startup file: Contains the Secure vector table and

[samillel6a_flash.ld // Secure Reset Handler.

[} samillel6a_sram.ld Secure System file: Contains the system init function in charge

¢ _startup_samlllel6a.c of secure system resources configuration (Clock, 10s, etc. ...).
¢ system_samlllel6a.c secure.c/.h files: Contains the Secure function examples

IS Secure_Functions Secure Main file: contains the Secure application main

€ securec d function

h secure.h '
= n‘;ain . Veneer: Contains the definition and declaration of the Non-
C| veneer.c P Secure Callable (NSC) gateways to the secure functions
R el declared and defined in secure.c/.h.

3.1.2.3 Project Properties
To access the project properties in the solution explore, on the Secure and Non-Secure projects, from the
short-cut menu select Properties.

Note: Ensure that all on-going debug session should be stopped before accessing the project
properties.

© 2018 Microchip Technology Inc. DS70005365A-page 19

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-7. Access to Project Properties

Py L1 Sobition - AgmefShudic [Adminittrator) Standard Mode ¥ k Lsunch [Ct Pl- B x
File Edt Weew YhmitX ASF Peoject Buldd Debug Took Window Help
e-ola-du-2Rd X = C - |[HR | p M Debug -] Debug Browser - E CBFfeBEeD-, s
L B t He W R W, ik, marsaunees T Heseon
Selutien Exglarer - R %
@ a-®E| -)|
2 P R r-r
- T‘Fi S e
: - —
Febuild
Clean
ginclude “sam.h i3 CopyFull Fath
* Secure functioms definition * [E Collapse
wintda_t funcl(wint3i_t x); Scopato This
* secure funitioas declaration * B New Sohution Explorer View
uine32_t funct(uint32 ¢ x) { add ¥
Feturn x + 4;
} S Add Library
£ Setan Sadllp Project
int main{vedd) BB Add Asduing Libesey
{
" uint32 t wal = 1 i - S
Wisews Exseniple Project Help J n
Cut Cirle X
X Eemove Del
O Rename F2
Urnilaad Pregect

Ry Error List

& Properties

This item does naot suppet previewing

In Secure project properties, the support of TrustZone for ARMv8-M instructions and compiler attributes is
set using the -mcmse compiler flag.

This setting is accessible in the project properties window under Toolchain>ARM/GNU C
Compiler>Miscellaneous>Other flags.

Figure 3-8. SAM L11 Secure Project CMSE Compiler Option

My 111 Secure_Project”™ + X EElglNRLEREIcl Al main_s.c samlllelba_flash.ld* SECURE_APP_README.txt

Build

Configuration: ’Active (Debug) VI Platform: ’Active (ARM) -

Configuration Manager...

EVICE

Tool “ IEA_RM"{GNU Common ~ B ARM/GNU C Compiler = Miscellaneous

& General
PeEs ——LLutentSile: Other flags: -std=gnu39 -memse
Py 4 [ARM/GNU C Compiler I

= mose -v)

; E;if;&;?;ssor] Support ANSI programs (-ansi)

& Directories

jOptiml'zation

= ebugging

& General
& Libraries
jOptiml'zation
& Memory Settings
& Miscellaneous
4 [ARM/GNU Assembler
& General
& Debugging L9
- @ARMHGNU Preprocessing Assen
& General
jf; Symbals -
< m | ¥

© 2018 Microchip Technology Inc. DS70005365A-page 20

AN5365
How to Develop a SAM L11 Application Under Atmel S...

The bridge between the Secure world and Non-Secure worlds is done through the specific Secure
Gateways (SG), which are also called Veneers, and are generated by the Secure project and placed
during the Secure project link into the Non-Secure Callable (NSC) memory region.

To perform this action, --cmse-implib and --out-implib linker options should be defined in the Secure
project properties.

Figure 3-9. SAM L11 Secure Project Linker --cmse implib and --out-implib Options

My 111 Secure_Project® + X SECURE_APP_READMEbt m X
Build
Configuration: ’Active (Debug) VI Platform: ’Active (ARM) VI
Build Events

Configuration Manager..,

EVICE

T 4 [Z] ARM/GNU Common . ; ker = M
ool - B
& General
Packs) & Qutput Files Linker Flags: -Tsaml11el6a_flash.ld -Wl,--out-implib=secureapp-cmse-implib.lib -Wl,--c1
4 [Z] ARM/GNU C Compiler

Advanced =G | —
A ETery Cther options (-Xlinker [option]) L H| | o
& Preprocessor

= Symbaols

Ef Directories
= Optimization
& Debugging
;:g Warmings

L

« [ARM/GNU Linker —
= ~ sal Cther objects L H| | o
& Libraries
= Optimization

L

& Miscellaneous
a ,

& General

& Debugging | 4
4 ﬂARM.-"GNU Preprocessing Assen

= General

& Symbols -
‘| n | 4| m J v

» --out-implib linker option: specify the Secure gateway imported library name to be generated by the
linker

« --cmse-implib linker option: requests that the library specified by the --out-implib is a secure
gateway import library, suitable for linking a Non-Secure executable against the Secure code as per
the ARMv8-M Security Extension.

The Secure Solution template sets the following options: -WiI,--out-implib=secureapp-cmse-implib.lib -
WI,--cmse-implib. The secure project developer can customize the library name by changing the --out-
implib option value.

At the C code level, all functions, which are defined with the cmse_nonsecure_entry compiler attribute
from the ARM CMSE extension, will be placed in the Generated Secure Gateway Import Library.

/* Non-secure callable (entry) function */
int _ attribute ((cmse_nonsecure_entry)) secure_ funcl (int x)
{

return funcl (x);

}
Secure/veener.c

The Generated Secure Gateway import library (secureapp-cmse-implib.1ib) can be found in the
Debug directory of the SecureApp project:

© 2018 Microchip Technology Inc. DS70005365A-page 21

ANS365

How to Develop a SAM L11 Application Under Atmel S...

Figure 3-10. Generated Secure Gateway Import Library

@\\:).I? » Computar ¢ Local Dick (Cs] » Wiy SAM L11 Solution » My SAM 111 Solubion » Securedpp » Debug e -|-1 | 2
Organize ~ | Gpen Bum Mew folder = - '!-'}
et o lame) Diate moditied Ype e
»m I 5 I
edce_Stamup AIANTHIZ PM Filie Tolde
...|rbaIB-:|: Secure_Functinns 117 B:13 PM = falde
- "I; | maind 124372007643 PM D File 15 KD
AppData ; ;
mang i} I 5 K
= Bes Syne) o '
| makedepemk 15 1KR
Comacts
D"'k(Mekefile 13RI ELI PM File 3ka
= E” = 1 =] Securehpphin 227613 PM BIN File 5,200 KB
.ebtw:.: | Securshppasp A7 612 P EEP Filg k2
[L=]
= ; I;_ | SecureApptf 17 I 54 KB
avirites
i Sacurshpphe 1371372017 6:13 PM EX File KB
(_;-:l:-q: live [} SecurcAppiss 17 6 1 - 4 K3
FL‘L | SscursAppmap AMNTEAZ P MAPF k2
nki
= z o e
FPLABAP, £
o "’": * I _| secureapp-cmse-implibilib 1213/2017 643 M LE File 1E3 I
Yy Locuments
b My Music T - -
e B | veresro A3ZNTHIZ P OF BEE
& My Pictures
B My Videns
& Onelrive
Reaming
™ Saved Games
o Searches
Tracirg
& Camputer
&L Loca Disk ()
o DVD R Drive (D
Eecureapp-cmse-imphib b Ds [N =cre 1/ 16 P
A
Th Secure Gateway Import Library content can be verified using the arm-none-eabi-gcc-nm

command located in the ARM GCC Toolchain install location:
C:\Program Files (x86)\Atmel\Studio\7.0\toolchain\arm\arm-gnu-toolchain\bin.

Figure 3-11. arm-none-eabi-gcc-nm Output

i

BEX Administrator: C:\Windows\System32\cmd.exe

Microsoft Windows [Uersion 6-1.7681]
Copyright (c?> 2889 Microsoft Corporation. All rights reserved.

secureann se—imonlib.1lih
BUB/c8 A secure_funcl
HBBAE7cB8 A secure_func2

C: \My_SAM_L11_Solution:\My_SAM_Li1_Solution“Securefpp:\Debug>g

b

G “\My_SAM_L11_Solution“My_SAM_L11_Seolution:SecurefApp \Debug>arm—none—eabi—gcc—nm

Note: The ARM GCC Toolchain install path can be added to the windows environment variable path to
call the arm-none-eabi-gcc—-nm command from the . 1ib location, as shown in the previous figure.

In a Non-Secure project, the use of TrustZone for ARMv8-M is transparent for the developer.

Only the Secure Gateway Import Libraries and its associated header files should be included.

This setting is accessible in the project properties window under Toolchain>ARM/GNU Linker>Libraries.

© 2018 Microchip Technology Inc.

DS70005365A-page 22

3.1.24

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-12. SAM L11 Non-Secure Project Linker Libraries Settings

My_SAM_L11_Selution - NonSecureApp

@
MonSecurefpp + X

Build
Configuration: | Active (Debug) - Platform: | Active (ARM) -
Build Events
| Toolchain : Configuration Manager...
Device
Tool 4 [E ARM/GNU Common “ || ARM/GNU Linker = Libraries
& General
Packs) jl:}utput Files Libraries (-1) [E| LE .ﬂ 1-r I
4 [E] ARM/GNU C Compiler —
Advanced = General secureapp-cmse-implib.lib
j{Preprocessor =
j{Symbols
;:rDl'rectories =
jOptimization i
jDebugging
jWarnings ; = & |1
eceTEED L seores ool EEEIEE
4 [E] ARM/GNU Linker [\\SecureApp\Debug
p—— mtttup

P eaton
jMemorySettings
& Miscellaneous

4 [E] ARM/GNU Assembler

& General

=F oL

4 | m | 3

For additional information, refer to the Create and Configure a Non-Secure Project (Customer B) chapter.

Resources Attribution
The Secure project is in charge of allocating the SAM L11 resources to both the Secure and the Non-
Secure worlds.

Prior to starting any development and customization of the projects, it is mandatory to verify the system
security resources attribution.

System resources can be allocated to the Secure or Non-Secure worlds by setting the SAM L11 NVM
fuses. These fuses are in charge of defining the configuration of Boot modes, ChipErases, system
peripherals (BOD and watchdog), IDAU (Memory security attribution), and PAC (Peripheral security
attribution).

Any change to fuse configuration requires a restart of the device, as fuses are handled by the Boot ROM
executed at device start-up. The Boot ROM is responsible for copying the configuration of the fuses in the
different peripheral registers, then locking the configuration to any users (including Customer A) until the
next boot.

The configuration of the NVM fuses can be done through some definitions at the beginning of the Secure
main.c file, or in the Device Programing tool available in Atmel Studio 7 by clicking on Tools>Device

Programming.

Note:
* The description of each USER_WORD can be found in section 70.2.1.2 SAM L11 User Row of the
product data sheet.
* The complete description of the SAM L11 Boot ROM can be found in section 14. Boot ROM of the
product data sheet.

To configure the NVM fuses, perform these actions:

© 2018 Microchip Technology Inc. DS70005365A-page 23

AN5365
How to Develop a SAM L11 Application Under Atmel S...

1. Fuses definitions in the Secure project main. c file:
To ease the management of the fuses in charge of Memory and Peripheral security attribution, the
Secure main. c file includes USER_WORD_x definitions. Any modifications to these definitions

allows the Secure application developer to easily setup the security attribution of a specific
peripheral, and manage memory security partitioning.

Figure 3-13. Fuses definition in Secure Project Main.c File

Y My 5801 solution - AtmelStudio (Administrator) Stanciard Mode X2 | Quick Lounch (Ctr~ Q) Pl= B x
File Edit View ViAssist{ ASF Project Build Debug Tools Window Help
i@-o @3- o-a@md | XAa|? @ [HR| b W Ocbug - DebugBrowse - B MU
DR Pt 2 | Hee | @~ - i T _§ B ATSAMUIEIGA § SWDonEDBG _
a Solution Explorer o x
= main.c = == C\SAM LLL Secure Solution v0.3 (BETAILASAM LL1 Secure Seluton 03 (BETAIL Securefppimaine 2 i‘;’GD Ql e d O -
= Unless required by applicable lew or sgresd to in writi tware B < ch Solution Explorer (Cri-$ -

= distributed on an A5 TS BASIS, WITHOUT -
MY KIND, either express or implied.
cific language governing permizsions and Fl MNonSecurehpp

@l Soluticn My SAM_LLL solution’ (2 projects)

= limitstions under the License. [d Dependencies
j — =4 Output Files
4 b [Libraries
ginclude "sem.h” B[4 Device Startup
<) main.c
g I wengerh

#* TZ_START_NS: Start address of non-secure application

sdefine TI_START NS 2x2e0espee . SecureApp

5d Dependencies
#% USER_WORD_X: User Row (UROW) Word X definitions *f =4 Output Files
#define USER_WORD @ 8xBOBFA37F [* BOD, Watchdog and Misc settings */ b [Libraries
wdefine USER_WORD_1 8xFFFFFBEE /* dog and Misc trings */ b 3 Device Starty
#define USER WORD I @xdéaszese /* morles Security tributlon: AS = @x88, ANSC = @x28, AS = oudd ™/ - e _p
#define USER_WORD_3 BxFFFFFEFF /% s te Enable =/ =
#define USER_WORD_4 8x30000008 /* Pc *y <)
wdefine USER_WORD 5 ex@pooepss /* Pz 2 B [NONSECE) */ g
#dafine USER_WORD & Bx2O0&6GE8 * | venzerh
__attribute_ ({section [“.userrowsec"}})
const unsigned long userRow[7] = { USER_WORD_@ , USER_WORD 1 , USER_WOAD_2, USER_WORD_3, USER_WOAD 4, USER_WORD S, L
#* typed=f for non-secure callbeck functions */
typedef woid (*funcptr_void) [void) _ attribute_ [(omse_nonsecure_call)); ¥
100% =4 »
Enitire Solution =| | 3 0 Emors | I 0'Wamnings |) 0 Messages | | Build + IntelliSense - Search Error List P -
Description Project File Line
Error List

2. Fuse definitions in the device programming tool:
The device programing tool available in Atmel Studio provides a graphical interface for managing
the whole set of fuses through various standard device programing tools, such as EDBG, SAM-ICE,

J-Link, and so on.

© 2018 Microchip Technology Inc. DS70005365A-page 24

ANS365

How to Develop a SAM L11 Application Under Atmel S...

Figure 3-14. Fuses Definitions in Programming Tool

P ™

EDBG [ATML3138011800000020) - Device Programming _ e S
Teool Device Interface Device signature Target Voltage
EDBG v | ATSAMLIIEIGA ~ [SWD ~|[Apply| 0:x20830100 33V
Interface settings _ Fuse Name Value |y
Tool information (¥) USER_WORD_2IDAU_AS OuFE

@) USER_WORD_2IDAU_ANSC
Device information @ - - - (20
Mermories (@ USER_WORD_2IDAU_DS 008 =
F 7
Uses (%) USER_WORD_2IDAU_RS 0xTF

Security JFUSFR WORD 3 NVMCTR] LIRWEN ol :

Fuse Register
USER_WORD_D

USER_WORD_1
USER_WORD_2
USER_WORD_3
USER_WORD_4
USER_WORD_5

Auto read

Value
O0xBO00A33F
0x000018EB
Ox7FOB20FF
0x00000001
000000000
000000000

Verify after programming

(AT T R P U L R R

Reading register USER_WORD_3...0K
Reading register USER_WORD_4..0K
Reading register USER_WORD_5...0K
Reading register USER_WORD_6...0K
Read registers...0K

E] Read registers..OK

(4

-

[Copy to clipboard]

Programm

I

Verify || Read |

By default, the Secure Solution template sets the following memory and peripheral security attributions in

the Secure main. c file.

* Memory secure attribution fuses (User Row — UROW) with:

— AS =0x80

— ANSC =0x20
— RS =0x40

— DS =0x0

© 2018 Microchip Technology Inc.

DS70005365A-page 25

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-15. SAM L11 Secure Template Memory Attribution

0x0000 0000

(AS x 0x100) — (ANSC x 0x20) = 0x7C00

APP_NSC

(AS x 0x100) = 0x2000

Ox1 0000
FLASH

O0x2000 0000
0x2000 0000 + (RS*0x80) = 0x2000 2000

O0x2000 4000

SRAM

Note: No boot section is defined in the template, therefore the boot parameters fuses (BOOTPROT, BS,
BNSC) are set to 0x00.

» All peripherals allocated to the Secure application (NONSECA = 0x00 ; NONSECB = 0x00 ;
NONSECC = 0x00)

Important:
é These definitions should be modified in any applications that require different Secure or Non-
Secure resources attribution.

3.1.2.5 Project Linker Files
Secure and Non-Secure projects have their own linker file available in the Device _Startup directory. Both
linker files should be aligned to the memory mapping defined in the product fuses. The following sections
illustrate how to configure Secure and Non-Secure project linker files according to the following default
configuration set in the SAM L11 Secure Solution Template, see SAM L11 Secure Template Memory
Attribution.

© 2018 Microchip Technology Inc. DS70005365A-page 26

AN5365
How to Develop a SAM L11 Application Under Atmel S...

3.1.2.5.1 Secure Project Linker File Content
The Scure project linker file should define at least four secure memory sections which must be in line with

the memory attribution of each secure area defined by the NVM fuses (Secure main. c file).

* rom: Defines the Secure Application section of the FLASH memory.

* rom_nsc: Defines the Non-Secure Callable section of the FLASH memory.
* ram: Defines the Secure section of the SRAM memory.

+ userrow: Defines the NVM Fuses section.

/* Memory Spaces Definitions based on Memories Security Attribution: AS = 0x80, ANSC = 0x20,
RS = 0x40 */

MEMORY

{
rom (rx) : ORIGIN = 0x00000000, LENGTH = 0x00007C00
rom nsc (rx) : ORIGIN = 0x00007C00, LENGTH = 0x00000400
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 0x00002000
userrow (rw) : ORIGIN = 0x00804000, LENGTH = 0x00000100

}

Secure samlllel6a flash.ld

* The following code should be present after the rom segments to link all the functions defined with
the attribute arm-none-eabi-gcc-nm.

.ARM.exidx :
{
(.ARM.exidx .gnu.linkonce.armexidx.*)
} > rom
PROVIDE HIDDEN (exidx end = .);

. = ALIGN(4);
_etext = .;

. = ALIGN(4);
.gnu.sgstubs :

{
_ssgstubs = .;
} > rom nsc

Secure samlllel6a flash.ld

* The following code should be present at the end of the Secure linker file to link the main.c User
Row (UROW) definition in the previously defined User Row (UROW) memory section.

. = ALIGN(8);
_estack = .;
} > ram

. = ALIGN (4);

_end = . ;
.userRowBlock :{

KEEP (* (.userrowsec))

} > userrow

}

Secure samlllel6a flash.ld

3.1.2.5.2 Non-Secure Project Linker File Content
The use of TrustZone is transparent in the Non-Secure project linker file.

The Non-Secure rom and ram section definitions should be defined as they are in any standard GCC
executable projects.

© 2018 Microchip Technology Inc. DS70005365A-page 27

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Important: Developers need to ensure that there is no overlapping between the Non-Secure
and Secure memory space definitions.

/* Memory Spaces Definitions based on Memories Security Attribution: AS = 0x80, ANSC = 0x20,
RS = 0x40 */

MEMORY

{
rom (rx) : ORIGIN = 0x00008000, LENGTH = 0x00008000
ram (rwx) : ORIGIN = 0x20002000, LENGTH = 0x00002000

}
Non-Secure samlllel6a flash.ld

For more details, refer to the Create and Configure a Non-Secure project (Customer B) chapter.

3.1.2.6 Secure Main Function
The Secure main function flowchart from the Secure Solution template is shown in the following figure.

© 2018 Microchip Technology Inc. DS70005365A-page 28

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Secure main routine

Secure System initialization

Set Non-Secure main stack
pointer

Start Non-Secure
application

The Secure main routine is in charge of: the following:

» Configuring system resources, security attribution of the system clocks, GPIO and mix Secure
peripherals (system_init function)

* Prepares the Non-Secure main stack pointer (MSP_NS) before jumping to the Non-Secure
application

This Secure main. c file can be used as a starting point for any secure applications development.

© 2018 Microchip Technology Inc. DS70005365A-page 29

3.1.2.7

3.1.2.8

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Note: The system init function is empty by default, keeping the SAM L11 registers at their reset
state (CPU running at 4MHz) . This function should be customized according to the Secure and Non-
Secure application requirements.

Non-Secure Main Function
The Non-Secure main function flowchart from the Secure Solution Template is shown in the following
figure.

< Non-secure main >

Secure function 1 call

Secure function 2 call

The Non-Secure main function illustrates calls to the Secure functions through each of the veneer, which
are provided by the Secure application.

This Non-Secure main. c file can be used as a starting point for any Non-Secure applications
development.

Secure and Non-Secure Functions Call (secure.c/.h; veneer.c/.h)

The SAM L11 Secure Solution Template illustrates the declaration, definition and use of Secure functions
across the Secure and Non-Secure projects.

© 2018 Microchip Technology Inc. DS70005365A-page 30

3.1.3

AN5365
How to Develop a SAM L11 Application Under Atmel S...

For more information on Secure and Non-Secure Function call, refer to the Secure and Non-Secure
Functions Call.

The following code example from veneer.c and secure.h illustrates the declaration and definition of a
Secure function and its veneer:

#ifndef SECURE_H_
#define SECURE H

extern int funcl (int x);

#endif /* SECURE H */

#include "secure.h"

int funcl (int x)

{

return x + 3;

}

#ifndef VENEER H_
#define VENEER H

/* Non-secure callable functions */
extern int secure funcl (int x);

#endif /* VENEER H_ */

/* Non-secure callable (entry) function */
int _ attribute ((cmse nonsecure entry)) secure_ funcl (int x)

{

return funcl (x):;

}

Thanks to the cmse_nonsecure_entry attribute, the GCC compiler will automatically manage the
generation of the Secure gateway section and linker will link it to the defined Non-Secure Callable region.

Important: When updating only the Secure project of an application that is flashed on the
target MCU, do not change the veneer function addresses. Any modification in veneer
addresses will lead to a misalignment between Non-Secure and Secure applications. This
would require a re-link to the Non-Secure application and to update the whole solution in the
SAM L11 Flash. Developers should ensure that the Secure gateways are linked to at a
permanent address.

Debug the Solution

When the device debug access level is set to two (full debug access), Atmel Studio 7 supports the full
debug of the Secure and Non-Secure projects allowing stepping through both projects and evaluating the
Secure to Non-Secure transition. The following steps illustrate the debug capabilities of the Atmel Studio
7 integrated development environment.

Wl
1. Power-up SAM L11 Xplained Pro, and then click or (Alt+F5) to start debugging, and
automatically break on the Secure main function.

© 2018 Microchip Technology Inc. DS70005365A-page 31

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-16. Start Debugging and Break on Secure Main Function

E] My samnn solution (Debugging) - AtmelStudio (Administrator) Standard Made SL Quick Launch {Ctrl+ £ = B x
File Edit Miew VAssist ASF Project Build Debug ook Window Help
o - = -0 - - <, Debug Browser = ¥ : n :

00000001

L LS Tle B | B-. CEERPE. & = ATSAMULIEIGA | SWD on EDBG (ATMLODI0OD

Properties startup_samlll.c Selution Explorer ~ X
1S main - Gl e-F@|F =])
/* typedef for non-secure callback functions */ B cenrch Solut a Explorer D -
typedef vold (*funcptr_vold) (vold) __attribute_((cmse_nonsecure_call)): — -
B Solution 'My_SAM_LI1 Solution’ (2 projects)
= F MonSecuredpp
The Secure Application: bl Dependencies
* Sets the non-secure maln stack (MSP_NS) B 4 Outpat Files
* Gets the non-secure reset handler b Libraries
* Jumps to the non-secure software application b [Device Stastup
K <] main.c
h veneer.h
/* Secure main() */
(4 Securehpp
int main(void)
2 |{ bl Dependencies
T LI Fil
funcptr_void NonSecure ResetHandler; 4l Output Files
P = Libranes
/* Initialize the SAM system */ L D“"“-S"'“‘”_P
SystemInit(}; b [Secure_Functions
i Sét non-iecure main stack (MSP_WS) */ <] veneer.c
__TZ_set _MSP_NS(*{({uint32_t *)(TI_START_NS))): K] veneer.h
#* Get non-secure reset handler */
MonSecure_ResetHandler s (funcptr_void)(®{{uint32_t *){(TI_START_NS) + 4U))); -
59 % =4]
Cutput
Show output from: Debug - =

2. Add a breakpoint on the return line of secure_func1 in the Secure project veneer. c file.
Figure 3-17. Breakpoint on secur_func1 Return (Secure Project)

E my_5aM L1 solution - AmeBStudio (Administrstor) Standaed Mode | T | CGuick Launch (Ciil= Q) P o B x
Eile Edit Yeew VAssistX ASF Project Build Debug Jook Window Help
-0 |B-do-t RS XA - DR b W Debeg . - meen

M G 4 - Y He % 8- - M.kl 0 o smatsamuiEsa T SWDonEDBS -

veneere & X LRI Sehutson Exploser
- 1] -|¥Go @ o-d@| &=
* Unless required by applicable lsw or agreed to in writing, sofftware Cd ® =y T p-
* distributed under the License is distributed on an AS I3 P B E—
* WARRAN OR COMDITIONS OF ANY KIND, either express Soluticn My SAM_L11 solution” (2 pecpects)
the License for the specific lamguage governing permiss 4 HMonSecurelipp
* limitaticns under the License. s Dependencits
. @ Cutpt Files
' T b Libraries
#include “secure.h™ /* Header file with secure interface AP =/ ’ = Device Startup
o] maing
* Non-secure callsble (entry) functionm */ i vengarh
=int _ attribute_ ((cwmse_nonsecure_entry)) secure_funcl{int x} " 4 SecureApp
{ & Dependencits
[] return funcl(x) ;] i Output Files
} P Libeaties
/* Won-secure callable (entry) functiem =/ P DE‘“"—:‘!“W
“int _attribute_((cmse_nonsedure_entry)) secure_funci(int x) # L Secure Functions
i c maing
return func2(x); o] veneerc
¥ n! venterh
100 % -
Exror List = 0 ox
Entire Selution = | €3 0Emors | § 0Wamangs | i} 0 Messages | Build = IndelliSense - Sesrch Ennor List 2=
Description Praject File Line
[N Comimand Window

© 2018 Microchip Technology Inc. DS70005365A-page 32

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Add a breakpoint on the return line of func1 in the Secure project Secure Functions/secure.c
file.

Figure 3-18. Breakpoint on func1 Call (Secure Project)

Y tysaM L33 sohution - AtmeiStudio (Administrater) Standard Mode | ¥ Cruick Lawnch (Cl- 0 P - B x
File Edit Yeew WAssistX ASF Project Build Debug Jook Window Help

-0 (B-4 -2 AP XIH €| P M pwg - DebugBrowe - B - REeT
[l 3 e & Hee % & - 2 - .] = @ATSAMUIIEIGA T SWDenEDBG -

vEneer.c Tain.C x
> funcl = 2] mttmetinen «| G0 & -2 s - >
* Unless required by spplicable lsw or sgreed to in writing, software td sdution Explorer (Chils§ p-
* dist ed under i License is distributed on an AS I TTHOUT - - = — =
. F KIND, either express i Seluticn My SAM_LLL solution’ (2 peapects)
e r the spe language governing permi a MonSecuredpp
* limitations under the License. 4 Dependencos
4 Output Files
b ol Librecies
#include “secure.h” /* Header file with secure interface APT */ b O3 Device Sartup
¢ main.e
-int funcl(int x) Ty vengarh
-1 . Securefpp
. ¥ L Dependencies
1 i Output Files
b ol Libranies
= int fumc2{int x}
(¥ [Device Startup
return x - 2; - Sl.rlllrr_fumtluns
¥ S secure.c
& secureh
c maing
] veneers
) veneerh
100 % -
Entire Sclutson = | €3 0Ermors § OWamangz | i) 0 Messages | Build = [elliSense - Sesrch Ennor List 2=
Deseription Project File Lane
[T Ceererand Window

4. Add a breakpoint on the secure func1 call in the main function of the Non-Secure project (Non-

Secure main.c file).

© 2018 Microchip Technology Inc.

DS70005365A-page 33

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-19. Breakpoint on secure_func1 Call (Non-Secure Project)

E my_5aM L1 solution - AmeBStudio (Administrstor) Standard Mode | ¥ Cpuick Lawnch (Ciel= # - B x
Eile Edt Meew WAssistX ASF Project Build Debug Jook Window Help
o - B-4 -2 Rd XTa - . & | b M Debug = Debug Browser = F. - |
W » - % He % 8- . dd o S ATSAMLIIEIGA T SWDonEDBG
SAM LI1 Xplaired Pro - 0001 = | Sokitson Explorer
* main = t]2 cusan 111 secure Solution v0.3 (BETAINSAM L1L Secure Schution 0.3 (BETAJI\NanSecuredpphmain.c «|&Go A m-F@ s - D
ko STEET——— =
' c stson Exp 2
Related User Row Fuse bits for this exasple: Soluticn My SAM_L11 solution” (2 pecpects)
a MonSecurelpp
& Dependencoes
@l Output Files
b ol Libranies
* Hon-secure main() * ¥ - De-v.ute_S-!ar!up
int mainfvaid) T
£ Fo venderh
* Call mon-secure callable function secure_fumcl =/ El SecureApp
[] wall = secure_funcl (1) d Dependencies
b1 l Outpan Files
- 11sble fumction fecure func? ®
1L;.‘ 'h'i-u!T.,v © collable fu ction secure_func? */ b Gl Libewies
val2 = secure_func2 (7); b [Device Startup
while [1): b [Secure Functions
¥ & maing
) veneerc
n| veneerh
W% =
Entire Selution = | €3 DErmors i 0'Wamings | i} 0 Messages | Build = [melliSense - Sessch Ennor List 2=
Description Praject File Line
[N Command Window

5. Continue the debug by clicking 4 or press <F5>.
As a result of this process, the debugger should stop successively on:

5.1. The Secure function veneer call (Non-Secure project).
5.2. The Secure function veneer (Secure project).
5.3. The Secure function (Secure project).

© 2018 Microchip Technology Inc. DS70005365A-page 34

ANS365

How to Develop a SAM L11 Application Under Atmel S...

Figure 3-20. Break on secure_func1 Return

] mhy_5aM 111 slution (Debugging) - AtmelStudio (Administratar)

Eile Edt Meew WAssistX ASF Project Build Debug Jook Window Help
©- -LEP Eeal0- q
(3 p|et 2t THa B | F-. GESFE. Sd

2+ gecure_ funcl bl :I" wit _sttnbute_([cmse_nonsecure_entryl) secure_funcl (int x)

* Unless required by

pplicsble law or asgresd to in writing,
e License ls distributed on am AS IS
5 OF ANY KIND, L
the specific language governing perm.
* limitations under the License.

either expr

#include “secure.h” /* Header file with secure interface APT */

Ll secure callable (entry) fun =/
=int __attribute_ ((cmse_nonsecure_entry)) secure_funcl{int x}

o |b==r=mm

¥

* Mon-secure callable (entry) functiom =/
Sint __ateribute_ ((cmse_nonsecure_eatry)) secure_funcl(int x)

i
¥

return func2(x);

Hame
L 1

Note:
Disassembly or press <Alt+8>.

Type
ine{multi

Salution Exploser

@ o-F@H L=

earch So e

i [MonSecurehpp
i Dependencier
4l Outpat Files
3 Libeares

3 libm

LT T

3 securespp-crmse-implib b
- Devce_Stamup
& maing
i wenaerh
4 SecureApp
i Dependenciey
& Output Files
= Librares
"3 Device_Startup
L5 Secure_Functions
< secures
) secureh

AT T T T -

)

] maing
&) veneer.c
] venesth

Solutron Explorer [EIETER TS

Memeny 4

Memens base FLASH

(B Solution My SAM_LLL soluticn’ [pregects)

A disassembly step-by-step debug is available by selecting the Debug > Windows >

© 2018 Microchip Technology Inc.

DS70005365A-page 35

314

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-21. AS7 Disassembly Window

My_SAM _L11_Solution (Debugging) - AtmelStudic (Administrator) Standard Mode SXES| Quick Launch (Ctrl+Q Pl - B x
File Edit View WAz ASF Project Build Debug Jeols Window Help
o - . S RA A .0 . a Debug Browser = Alisme =

B30k tate T HS J-. EESFE. & . ATSAMLLIEIGA =

Secursfpp.lss Disassembly = X [EEN miain.c ~ | Solution Explorer - 0 X

@ o-@| , =]

Address: main -

v | Viewing Options
opReTaFs 227 Unknown instruction -
SORATEFE 227 Unknown i
BBpBATEFE PP Unknown
BRRa7EFA 227 Unk
GOROTBEC 227 Unknown i
SBBATAFE 227 Unknown instruction
= Ci'My_SAM_L11 Selution'My S&M L11 Selution‘Securedpp\Debug\Securedpp.lss ---

Food: e97f e97F g
SOBE TN 3-4

Feid: f7f8 baB6 b.w 114 <__acle ze_secure_func2>

Search Selution Explorer {Crl+§

@ Selution My SAM_L11 Sclution” (2 projects)
a MNenSecurefpp
B Dependencies
b Output Files
& | Librares
3 Wb

2 secureapp-cmse-implib.lib
B[Device_Startup

POBOTCAS b.w #-31476 clime
7ceB: e97f €97 sg iy veneerh
© posarces =g - SecureApp
Fedc: 7B ba72 b.w f4 <__acle_se_secure_funcls i Dependencies
SRRaTCC b.w #-31516 & Output Files
= Mo source file ---cc-mmcocccmmsmrccmrr s s s s s s e e e - Libraries

T T T w

e 3 Device_Startup
ro
N [Secure_Functions
re
3 c] main.c
ra T VENEEr.C
o n| veneer.h
ré

mOVE 'G, ra

Mo SOUPrCE FIle cccmecceccmcccnccicicicccncccsccncaccscncanascnaanm s annan
RBATT I 222 Inbnreen inctro La st

4

Watch 1 B X | Memoryd
Memony: base FLASH -

ONEOeM0DRE 30 86 B0 20 a5 01 o0 20 a1 01 00 @ al 91
Call Stack Br

Autos Locals [EHSIBY Watch 2

Stopped

Protect the Secure Application Using Debug Access Levels

In a dual developer deployment approach, it is important to protect the secure application from further
debugger accesses prior to delivering the pre-programmed chip to Customer B.

This can be done by changing the debug access level (DAL) to one. Changing the debug access level
can be done using the Device Programing Tool by following the steps below:

Close the debug session (if running).
2. Open the Device Programming tool by selecting the Tools > Device Programming.
3. Send the DAL1 command to the target SAM L11 Device:

3.1. Select the Programming tool and click Apply.

3.2. Select Memories.

3.3. Select Set DAL 1.

3.4. Click Change DAL

3.5. Verify that no problem is reported by the Device Programing tool.

© 2018 Microchip Technology Inc. DS70005365A-page 36

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-22. Changing DAL Using the AS7 Device Programming Tool

— = ———

[EDDG(A D00CO000000C A ———————— mx |
Tool Device Interface i Device signature Target Voltage 2 |
|EDBG ~| ATSAMLIIEIGA =~ |SWD ~||Apply|] | 0x20830000 |Read| 33V |Read| |£¥/

Interface settings Device (DAL= 5 |
Tool information (SetDALL ~ Jfi Change DAL |
Dy information Flash [5-6':3}
Memories 32 CAMy_SAM_L11_Solution\My_SAM_L11_Solution\SecureApp\Debug\SecureApp.elf - l -
(¥] Erase Flash before programming -
Fuses P Vi
. | Verify Flash after programming Togrm | erify | | Read
i v | Advanced '
User Page (256 bytes)
CA\Users\jerome semette\Desktop\SAML11_Trusted_execution_environment_demo.userpage hd | -
] Erase User Page before programming
P -
| Verify User Page after programming regram | iy | Read
v | Advanced

‘I

‘ Setting device in DAL level 1... OK 6

|I (=] setting device in DAL level 1.. OK ”

Close

As a result, setting DAL to one (DAL1) prevents any future debug access to the Secure application
and requires a ChipErase All command to re-enable the access to the Secure memories (DAL2).
This can be tested by relaunching a debug session and running the code.

© 2018 Microchip Technology Inc. DS70005365A-page 37

3.2

3.21

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-23. Launch Failed Error on DAL Protected Area

B sty sam 11 solution (Running) - AtmciStudic (Adminstrator Standard Mode S¥E Quick Leunch (Ctrie P o O x
File Edm View VilszmtX ASF Project Build Debsg Tools Window Help

o- . St X -o-|Ee B mEes

Ll S<lution Exploser 8 x

@ o-0m|F -

) Solution ‘My_SAM_L11_schution’ (2 projects)
E NonSecureApp
4 SecureApp

b Ll Dependercies
b Ll Output Files
bl Libeasies

b [Device_Statup
a

#include “secure.h” f* Header file with secure i

on-secure callable (entry) fur = I Secure_Functions
=int _ attribute_ ({cmse_nonsecure_entry)) secure_funcl{int x) - “

{ Launch Failed
LI return funci(x);]
}

Failed to lsunich program.
* Mon-secure callable (entry) functicn */
int _attribute_({cmse_nonsecure_entry)) secure_fumc2{int x)

{
H

Errcern: Enroe waiting memaory at 00804000-0080400 ¢

return funcl{x); l

Selution Explore []

® | Memony 4

Locals Watchl Waech2 Call Stack Breakpoints Command Window Immediate Window Output IREIELEY

Important: Further development with the device requires the use of a standalone Non-
Secure project. Refer to the Create and Configure a Non-Secure Project (Customer B). A
ChipErase_ALL command (CE2) can be issued if the Secure application still needs to be
debugged.

Create and Configure a Non-Secure Project (Customer B)

In the Customer B context, the development starts with a preprogrammed SAM L11 device that contains
a DAL1 protected Secure application with predefined veneers.

It is mandatory for Customer A to provide some Non-Secure resource attribution descriptions, and Non-
Secure callable function API information to Customer B.

Ideally, the approach should be for Customer A to provide a Non-Secure project template to Customer B.
The following sections explain how to create and configure a Non-Secure project for a preprogrammed
SAM L11 device with a DAL1 protected Secure application.

Project Creation
To create the project perform these actions::

1. Open a new Atmel Studio 7 instance.
2. Select File > New > Project.

© 2018 Microchip Technology Inc. DS70005365A-page 38

AN5365
How to Develop a SAM L11 Application Under Atmel S...

3. Configure the new project in the New Project window:

3.1.
3.2.
3.3.
3.4.

Access the C/C++ tab.

Select GCC C Executable Project.

Enter details for Name, Location, Solution, and Solution Name.

Click OK.

Figure 3-24. SAM L11 Standalone Non-Secure Project Creation Under AS7

P Recent

4 [nstalled

o

Marmne:
Location:
Solution:

Solutien name:

AtmelShudio Solution

Sort by Default
GCC C ASF Board Project C/Cr+

GCC C Boecutable Project

G o Seatic Library Praject CfCe+
G C+ 4 Executable Project CfCe+
GCT C++ Static Library Project C/Ce+
;&S SAM LL1 Secure Solution «0 3 (BETA) C/C++
(= o) Create project from Arduing sketch C/C+~

My_SAM L1L Project
Ch
Create new solution

My_SAM_L1L Project

Search Inctalled Templates [Ctrd+E) -

Type: CTFl++
Creates an AVR 8-bit or AVR/ARM 32-bit C

project

T L-\
o
Vet . |
Coha |
=y, -
£ St
Prgn
L#7.08
gy, g
-\-"\-\.__ —_—

[Browse...

| Create directery for solution

4. Select the ATSAML11E16A device in the Device Selection window, and then click OK.

© 2018 Microchip Technology Inc.

DS70005365A-page 39

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-25. SAM L11 Product Selection for New SAM L11 Standalone Non-Secure Project

R
e =

Device Family: | Al ISAMLll

Mame App/Bost Memory (Kbytesi Data Memary (bytes) EEPROM (bytes) | Device Info:
ATSAMLIIDI4A 18 8192 N/&
ATSAMLLILD15A 34 8192 NfA
ATSAMLIID16A 66 16384 N/A
ATSAMLLLEL4A 13 §192

Device Name:
Speed:
Voo

Family:.

ALyl

ATSAML11EL6A Device page 1or ATSAMLTIETEA

Supported Toals
» Almel-ICE

X EDBG

X EDBG MSD

= JTAGICES

i mEDEG

A Power Debugger
& J-Link

& J-link over [P

Lo Wl Conce

The result is the Non-Secure project appear in Atmel Studio IDE, see image below.

Figure 3-26. Standalone SAM L11 Non-Secure Project Under AS7

Ea My_SAM_L11_Project - AtmelStudio (Administrator) Standard Mode "X Cuick Launch (Ctrl+) P = B x
File Edit Weew WhssistY ASF Project Build Debug Jook Window Help
co|B-@u-aRP LS -G | R P [owe -] DebugBrowse - ” msens
W [H B L He % @ - . dd o @mATSAMUUIEIGA T Momeon -
[T SA R 1] Xplsaned P 6 T ——
* mbing =l .I-) LMy SAM LT Propectibly_SAM_LLL Propectimain.c =|{"Go A - - D
1 L11_Project.c -l Seaech Sodution Exploser (Ctrl+ -]
=0 @ Seluticn My SAM_L11 Progect’ (1 pecgect)
¥ Created: 1271972017 10:98:52 AM - By SAM_L11 Project
* Author 1 M43472 @ Dependencess
 Output Files
¥l Libreries
#include “sam.h” ¥ =] Device Startup
C] mainc
=int main{woid)
£ Initialize the SAM systes
SyatemInit();
/* Replace with your application code "/
while (1)
}
¥
100 % =
Entire Sclution = ||| € 0Emors || 4 0Wamings |) DMessages | Build « IntelliSense - Search Eror List p-
Description Project File Line
[Ty Command

© 2018 Microchip Technology Inc. DS70005365A-page 40

AN5365
How to Develop a SAM L11 Application Under Atmel S...

3.2.2 Project Configuration
Prior to starting Non-Secure project development for SAM L11, it is mandatory to perform these actions:

» Configure the project by aligning its linker file to the Secure and Non-Secure memories attribution
predefined by Customer A.
* Add the Secure gateway library and veneer file and link them to the project.

3.2.2.1 Align Project Linker File to the SAM L11 Non-Secure Memories Attribution
The following illustration provides how to modify the Non-Secure solution project linker file according to
the following Secure and Non-Secure memory space.

00000 0000

Ox7CO00

APP_NSC

0x3000

Ox1 0000
FLASH

0x2000 0000
0x2000 2000

0x2000 4000

SRAM

Follow these steps to modify the Non-Secure solution project.

1. Open the project linker file: Device Startup/samlllel6a flash.ld.

© 2018 Microchip Technology Inc. DS70005365A-page 41

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-27. Non-Secure Project Linker File Location

Ed My sauin Project - AemeiScudio Ghdminicrased) Sharcarel Mccta [Qusce Lauach (€1t) A - B x
Fie [Edit Yoow NAsmol ASF Pojet Buld Debuy Iooks Window Hep
Q-0 f-d o-U P XA O || P M Detug = Debug Browser = F -
L > LG e WM.k 00 eeaTsAMLIEEA T Mencon .
SAM 111 Eplaned Pro - 0001 B < ciion Explorer > T x
. * fle-am #= 0
T B Search Selation Liplew g F- B
*= ‘yordef Linker seript for runming in imtermal FLASH on the SAMLIIELEA i Sohusion Wy SAM_I11 Prcject (] project)
. chut y_SAM_I1L_Proy e
“ gopyright (c) 2017 mlerochip Techmology Inc. o My SAM L11 Project
- = Pependewons
* asf_License_start 53 Output Fies
. L

* page Licensze I 4y Device Serup I
= SPCX-LiceALe-Tasatitier: Apashe-2.0 TRAMALIeLEs sram

€ startup_samill.c
c) system_samillc

€ maine

* Licensed under the Apache License, Wersion 2.8 (the "License™)) you may
* mot use this file sxcept in compliance with the Llcemce.
" You ey obtein e copy of the Licence ot

= Bt e aoache oraf licenses /| TCEMSE-2.8
®

Ualess required By applicable law oF agreed %o in writing, software
" distributed under the License is diseributed on an AS IS5 BASIS, WITROUT
* WARRANTIES OR CONDITIONS OF ANY KINWD, either copress or implied.
* Spe the License for the specific language poverndng perslssions and
* limitetions wunder the License.

MIW - d 4

feniee Salutina = | 0Emors | 4 OWarmangs |) O Mlessages | Build - bvemtense - S Erroe List o

Desciplion Puegact Fila Liné

S Command Wirdew

2. Update the linker file memory space definitions according to the SAM L11 Non-Secure memory
attribution.

/* Memory Spaces Definitions */
MEMORY

{

rom (rx) : ORIGIN
ram (rwx) : ORIGIN
}

0x00008000
0x00002000

0x00008000, LENGTH
0x20002000, LENGTH

© 2018 Microchip Technology Inc. DS70005365A-page 42

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-28. Non-Secure Memory Address and Size Definition

E Iy SAM_L11_Project - AtwnelStudio [Adm inistrabor] Standerd Mode [X ik Leunch (Ol () P a O x
Fle Ed® View Vo ASF Project Buld Debug TJook Mmdow Help
@ G-@d a-2@d XA | 9T | & bW Deng « Debug Browse - A s RmEeL
S 13 iy & Ha 5| & - . H. o ERATSAMLLIEIGA T Momeon -
samQlglla Mach ld™ = xRS SAM L11 Xplained Pio - 0000 n

- + el D|

= sasf license stoo - |l o-d@ F - ~

= Sen e ——— B

o & Selutien My SAM_LIL Project’ (1 project]
4 [y My SAM_L11 Project

GUTPUT_FORMAT(“elfid-littlearm®, “elfii-littlears®, "elfi2-littlearn”) 2 Deperadencies
CRT P _ARTH are) = W Outpu Fils
SEARCH_DIR{ .} [Libranes

4 [y Device Statup

[3 seenillelfa Aahid

/* Memcry Spaces Definitions)
MEMORY

([0 wsrillelfia_ssambd
ron {rx) & oRIGIN = s LENGTH = = siartup_samill.c
ran {rex) : DATOIN o Bx7B003088, LENETH = GxBOMTHE &l system_tamll.e

I & maine

#* Thie stack slze used by the application. MOTE: wou need to adfust according to your soplicatlom. *F
STACK_ST7E = DEFIKED{STACK_SIZE) ! STACK_STZE : DEFTMED(_skack_size_) * _ stack_size_ : Bui00;

/% section Defindtieas =/
SECTIONS
{

hext

% 4 T b

Ertie Sebutwor QoEmor | 4 0Wamings | 0 Messages | Buld » bteliterss - Search Error List p-

Deserptian Froject Fale Line

[T R Cornmand Window

3.2.2.2 Add and Link the Secure Gateway Library to the Non-Secure Project
To add and link the Secure gateway library to the Non-Secure project, follow these steps:

Copy the Secure project implib inside the Non-Secure project.
Figure 3-29. Secure Gateway Library File Inclusion in Non-Secure Project Sources

Organize - L] Open Burn MNew falder

-

- . Marne Date modified ype
»{ Favorites £

. Debug 12/19/2017 10408 .. File folder
PR Desktop . Device_Startup 12/19,/2007 11402 .., File folder

[£] main.c 12/19/20171008 .. CFil=
My_SAM_L11_Project.compenentinfosenl 12/15/2017 10408 .. XML File

My SAM 111 Project.cproj 12118/2017 10408 ... ATMEL Studic 7.0 ..
ﬁ S —
| | securcapp-cmse-implib.lib 12/18/2017 1240 .., LI2 File

secureapp-amse-impliblib Date modifizd: 12/18/2017 12:40 PM Clate created: 12/19/2017 11:23 AM
LIB File Size: 316 bytes

Under Atmel Studio 7, right click on the Non-Secure project and select Properties.

© 2018 Microchip Technology Inc. DS70005365A-page 43

ANS365

How to Develop a SAM L11 Application Under Atmel S...

Figure 3-30. Access to Non-Secure Project Properties

camll1elfia_Nlach k™ = X main g SAM 111 Nplained Pro - 0001

STACK_SI1ZE - DEFIMED{STACK_SIZE) * STACK SIZE :
J* Section Defindtions *f
SECTIONS
{
Jtext 1

s = ALLBN(AT

_sflxed = .

CEER("] wectors weckors,”})

"{.tewt .tewt.® .gna.linkomce.t.*)

&) Loplue_)

.rodata® g limkonge.r.*)
=i ARM, extab® g, Lickonce, arsextab, *]

o = ALLGN(AYE
CEEP((. Init})

. = ALTON{AY;
_preinit_asrray_stert = .
EELF {"[.preinit_srray))

300% + 4

Ention Solution) 0Emoes | 1, OWerangs |} 0 Messages

Description

Qutput

Thiss R does Mo SUpPon priviesing

B3ty M 00 Project - ammatStudio (haminictater) SunducdMode ¥ Cuckis P o B =

Fle bt Meow VAwotX AF Projct Budd Dcbug Tooh Window Help

- S-da-t@P| XD S N TR - Dabug Browser - E - R
Wi R L3 — Hea % | 8-, B, G| o). eeatsaminesa § Noneon |

J* The stack size used by the application, MOTE: you need ko adjust according to your application
CEFIMED(__stack_size__) ¥ _ stock_size__

f* Support € constructors, and € destructors in both user code
end the © librery. This also provides suppert for C#t code, *f

Error List bpart Project & Exbéndson I

Solution Explorer
@ o-dE -

[y

=y

ol

& B

Febuild

Chean
42 Copy Full PEth
4| Collaps

Scopets Thie

]

¥ Mew Sobution Explorer View

Add "
Add Libvary

Set a5 Rartllp Progect

Add Asduine Librasy

He o

" Wiew Examnghe Progect Help ¥

Corls
Remave el

Build = IntalliSance L T

A x

Sename F2

nlcad Propct

Fropetes

3. Add the Secure Project library by clicking the Add Item button in Toolchain > ARM/GNU Linker >

Libraries.

Figure 3-31. Add New Library to the Link Option

My_SAM_L11 Project = X

Build
Configuration: | Active (Debug)
Build Even b
Toolchain Configuration Manasger
Device
4 | ARM/GNU C Compiler
Tool =
o & General
Packs W Preprocessor
) __A’Syrnools
AT & Directories
j’Op!umu:anon
= Debugging
& Wamings
s & LT
4 (2% ARM/GNU Linker

L Las

d Uptimization
& Memory Settings
= Miscelaneous

4 ,"f ARM/GNU Assembiler
T General
X Debugging

m

v| Platform: Active (ARM) .

| ARM/GNU Linker = Libraries

Libraries ()

libm

Library search path (-L)] W | s

$(ProjectDir)\Device_Startup

4. Enter the library name.

© 2018 Microchip Technology Inc.

DS70005365A-page 44

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-32. Adding Secure Gateway Library Name

F R

Libraries (-1}

secureapp-cmse-implib.lib

I |§ancel I

5. Add the Secure Project library path by clicking the add Item button in Toolchain > ARM/GNU Linker
> Libraries.

Figure 3-33. Add New Library Search Path
s peece =

Build

Configurstion: | Active (Debug) v] Platfanm: lAﬂiva{.ﬁ.RM] -
Build Events : i

Device

Teol & ‘i‘;“gﬁ””[':“”‘"‘“‘" * | [ARMGNU Linker = Libraries
Senera :

= jj Output Files Libraries (-1)

4 | ARMAGNU C Compiler
Advanced o General P libm o
':JPreprc-cessu'. secufeapp-cmse-implib.lib
O Symbols
T Directories
& Optimization
& Debugging

& Warnings 8 -

T Miscellanecus Library search path (-L) * J| SRR R
a [ARM/GNU Linker ${ProjectDir)\Device_Startup

& General

T Libraries
I Optimization
5 Memary Sattings
T Miscallanasus
a [ARM/GNU Assernbler
T General
T Debugging
4 _'jARM-‘GN'J Preprocessing Assen
O General
"W Surnhnde
m

6. Click on the “...” button to browse and select the location of the secure project implib. Select
"Relative Path" to ensure project portability.

Figure 3-34. Enter Relative Path to the Secure Gateway Library

Library search path (-L)

CAMy_SAM_L11 Project\My_SAM_L11 Project
| Relative Path

oK || Cancel | I

© 2018 Microchip Technology Inc. DS70005365A-page 45

AN5365
How to Develop a SAM L11 Application Under Atmel S...

7. Linker Libraries properties should be displayed as given in the image below.
Figure 3-35. Non-Secure Project Linker Libraries Configuration

wsami et = < IR

Build

Lonfiguration: [Artive [Debug) v] Platform: [Ar:tive (ARN) v]

Build Events

Toolchain Configuration Managzr...

Device

Tool
Packs

Advanced

4 [Z] ARM/GNU Common
_’-ﬂf General
jDutput Files

4 [Z] ARM/GNU C Compiler
& General
[Presrocessar

ARM/GNU Linker = Libraries

Libraries {-I)

"L] & | 5| &

libm
secureapp-cmse-implib.lib

g Symbols
[Directories
[Optimization
= Debugging
B Warnings
EH Miscellaneous
4 [Z] ARM/GNU Linker
[General
=
j’Optimization
[Memory Settings
[Miscellaneous
4 [F] ARM/GNU Assermbler
[General -

—s_ . .

Library search path (-L)

EEEEE

$(ProjectDir)\Device_Startup

4 m [3

8. Clcik N (Save button) to save the project settings.

3.2.2.3 Add and Include Secure Gateway Header File

To add and include a secure gateway header file, perform these actions:

1. Copy the Secure gateway header file from the Secure project to the Non-Secure project.
Figure 3-36. Secure Gateway Header File Inclusion in Non-Secure Project Sources

=S| x
@@' o= My SAM_LLL Project » My SAN_LL1 Project » - | 3 | Seanch My SAM_L11 Project =
Organiza = E Opan « Burn Mew folder HE |:|;| lﬁ
B MyVideos * Marms= - Date modified Type Size
& OneDrive
. Debug 12/19/2017 10:08 .. File Folder
. Foaming i e o
. Device_Martup 1271972017 1235 . File Folder
Soved Garne]) _
ﬂ main.c 1271972017 10:08 .. i File 1 KB
[Searches)) B - .
. | My _SAM_111_Project.componentinfoxml 127132017 10:08 . KWL File 10 KB
| l My_SAM_L11_Project.cproj 12192017 12:36 . ATMIEL Studio 7.0 ... B KR
18 Computer .

2L, Local Disk (¢
<% DVD RW Dri -

12/18/2017 11:05 ...

E veneerh Date maodificd: 12/18/2017 1105 AM
H File Siz= B4E bytes

Date created: 12/9/2017 12:37 PM

2. Right click "Non-Secure project” in the solution explorer, and then select Add > Existing ltem.

© 2018 Microchip Technology Inc. DS70005365A-page 46

ANS365

How to Develop a SAM L11 Application Under Atmel S...

Figure 3-37. Secure Gateway Header File Inclusion in AS7 Solution Explorer

T osbrlaf LLrker worlat for resning Lo Leternal SEAM o0 Rhe SAPLLIELSA
o Copyrighe (£} 207 Misversip Teohasiagy D82

= waif_Llcenie_itirt

= page Lisense

" SPRM-License-Identifler: Apachi-1.0

= Lireaned urdes the apache Lfesnse, weeslon 2.8 (the “License®l; you ey
* not wse this flle except In complisece with the License.

oa may cbiais » copy of the Licence st

* Unless recuired by appliseble lma or sgreed to in writing,
2

ot tmern
% mas wET

= | D 0Ewes | b DWamng || D OMesages | Baid « beeliforme -

Ao deeih ol Suppod priviesang

H Wy S0 11N Frepeed o Sbrreefiinmben {4 drpruale wer) feendadboce T P o B =
Fde L Wies WSl S50 Predt Bell Debug Tech Wedow Melp
e-o|B-Au-tMp XF LY - meeli:
W » 4 e A B,k Sarmnnes | oo |
Schutan Enpler - g
- ¥ IR W R R

3. Select the Secure gateway header file, and then click Add.
Figure 3-38. Secure Gateway Header File Inclusion in Non-Secure Project

Organize « Mew folder

EJ Atmel Studio 7.0 BSme

My_SAM_L1L_Project.cproj

E] mazin.c

. My_SAM_11_Project.componentinfouml|

[Fawvarites

M Desktop secureapp-cmse-imalibib

| veneerh

[rate modified

12/19/2007 1235 ...
12/19/2017 10:08 ...
12/19/2007 10:08 ...
12,/18/2017 1240 ..

p=

Sehmian Wy SO0 111 Pasjem (L prejeey

il Buid

Brbaik

=2 Copy Full Fah

—

L "1 b Bace e

E e arn ity A

Pl Frice

G A Ly
O Sl an S U Pt
B add dssuing Libewry

Refernee.

e Lnmmple Progert Hielp B

& Cm Creied

Type

ATMEL Studio 7.0 ...
C Source File

AML File

ﬂ'} File

12/18/2017 11:05 ...

H File

\. Device_Startup
.. Debug

File name: veneerh

12/19/2007 1235 ...
12/19/2007 10:08 ...

Filz folder

File folder

» | AllFiles) -

Add

Iv [Cancel

4. Right click "Non-Secure project" in the Solution explorer, and then select Properties.

© 2018 Microchip Technology Inc.

DS70005365A-page 47

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-39. Accessing Non-Secure Project Properties Under AS7

] nav500 111 Project - stmatStudi (sministztar) Standard Mode | ¥ Gk Lo (011 A - B =

Fille Edet Wiew VAsustX AS Propect Bwld Debug Took Window Help

- |- a-t@ap X - - & b Ml Debug - Debug Browser - | & -|@Re e,
Wk » = Ha B -, W, &), marsamnRes T oMesesn |

camillelfa_fadhld™ < ¥ mainc SA 111 Xplsirved Pro - 0001 Solution Explarer *8x

t @ o-am F=] 0B
4% The stack slee wsed by the applicavion. MOTE: you meed to adjust sceording to your application. *f et b Sobutus =5 p=l
A I = DEFIMEDISTA 176} ? STACE SITF : DEFINE nek sire) 7 . - . .
STACK_SIZE = DEFINED{STACK_S12E) ACE_SIZE @ DEFINEDN _steck_size_) 7 _stock_size_ : @wdon; 0 Solusion My _SAM_LLL_Prosest” (1 projeet)
J* secvien Defindtiesms */f o=
secTIoNs & Buid
1 Rebuild
R -
i Chean
« = ALLGN{4); 43 Copy Full Path
sflxed = .3 - .
KEER(*[.vectors .wectors.”]) olaps
*i.tewt otewt.® gnua. linkomce.t.®) Scopets This
*leplue_it) "[.plue_7) -
by ; - 3 == MNew Solution Exploney V
*{.rodeta .rodatat grw. Linkence.r . *) B New ion Explorey View
*{L R4, extab® g, Lirkence, arsextab, =) add O
#* Support € constructors, and € destructors in both user code S Add Libeary
=nd the € librery. This also provides support for C4b code. */ € Setas StaniUp Project
o= ALIGNAYE =
EER{* (. AnltY) B2 add Arduine Lisaary
. o= ALTAN{AY;
—preinit_srray_start = .
KEEP {*[.preinit_srray)) = ard Win
) View Examigie Proct Help *
D DEnces || A 0Warnings || 0 Mesages ||| Build + WteliSence ¥ Cu Cuta X

This item dots not suppon proviesing

5. In the Non-Secure project property window, select Toolchain > ARM/GNU C Compiler > Directories
and then click Add Item.

Figure 3-40. Adding New Compiler Directory to Non-secure Project

My _SAM_L11 Project” & X

Build
Configuration: | Active (Debug) | Platform: | Active (ARM) -
Build Events ')
Toaolchain : Configuration Manaper
Device
A A al -

Teol 4 5] ARM/GNU Common ARM/GNU C Compiler = Directories

H General :
Packs - el bt #| Include Device Support Header Path (-I)
R 4 |3 ARM/GNU C Compiler 0 1 il e
Advanced I — — i I Include Paths (-]) E" 118 1l &

__{”'CP'O“‘HO-‘ - ${PackRepoDir)\arm\CMSIS\S.0. 1VCMSIS\Include),

S{PackRepoDir\AtmeNSAML11_DFAL0.3Rinclude

o Optimization
& Debugging
& Wamings
& Miscellaneous
[#] ARM/GNU Linker
T General
& Libraries
_'-fC'p::m-z.al:-:m
& Memaory Settings
& Miscellaneous =
. m L

6. Click on the “...” button to browse, and then select the location of the veneer . h file. Select
"Relative Path" to ensure project portability and then click OK.

© 2018 Microchip Technology Inc. DS70005365A-page 48

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Figure 3-41. Include Secure Gateway Library Path in Compiler Directory

F 5
e (N

Include Paths (-1)

CAMy_SAM_L11_Project\My_SAM_L11_Project

elative Path

| [

7. The Compiler Directories properties will be displayed as follows.
Figure 3-42. Non-Secure Project Compiler Directories Parameters
My_SAM_L11 Preject” & X

Build 4
Configunation: | Active (Debug) v| Plattorm: [Active (aRM) -

Build Events
Device)
Tool 4 [ARM/GNU Commaon T|JA1MIGNU C Compier = Directories

& Genera —
Packs & Output Files 1] Include Device Support Header Path (-I)

4 [ARM/GNU C Compiler F S —

Advenced = o Genera a Include Paths (-) _IL | & | i | ¥ |

—-:1 Preproceccor ${PackRepoDirfarm CMSISS.0. 1N MSIS Include

[Symbos $(PackRepoDirfitmeNSAMLLL_DFP\1.0.66\include

I Directories = .

& Optimization

[Debugging

& Warnings

& Miscellaneous

o [H] ARM/GNU Linker

[Genera

5 Libraries

& Optimization

o Memary Settings

& Miscellaneous

4 [# ARM/GNU Assembler
]_'L—enera -
-' m. ¥
8. Press

(Save button) to save the project settings.

9. Add the following line at the beginning of the main. c file to include the Secure gateway library:

© 2018 Microchip Technology Inc. DS70005365A-page 49

AN5365
How to Develop a SAM L11 Application Under Atmel S...

10.

11.
12.
13.

Figure 3-43. veneer.h Inclusion in Non-Secure Project main.c File

F oy 5w 000 progect - atmetsado (Administrator) Suancand Iede SRR Quick Launch (Cri+ Fl= B8 x

Eile Edit Yew VAssimX ASF Projert Huild Debug Took Wisdow Help
Q- Q- u-udF 2 - . W | b W Dibug
[> t = He % @1 I

it oG EMATSAMILIENGA T Moneon |

Search Setion Explarer [Crle B =

P CSAM_L11_Praject

NEEDE

olution W SAN_LLL Prcject’ I project)
b =d Dependencies
F5d Ohaiput Fles
5 Libwarses
J liben
J secureapp-cme-impilih b
4 [Device_Statup
samillelba Nashid
= samillelfa_srarmld
¢ sartup_sanlll.c

< syshern saendl] e

IR ¢ ornand Window

= Benls . S g
while {1} n vengerh
t
0 %
Brerbist * 3%
Enbire Soluten v | €3 OEmers | | OWamings |) 0 Messages || Build = lntelldence -
Deseription egect File Lirse

Click

+
Click k&= (Build Project button).

(Save button) to save the modification to the main. c file.

Verify that no error is reported by the build process.

Launch debug session and confirm it is working.

Important: This requires the previous Secure application to run, if not the application will
hang and do not jump to the Non-Secure one.

Figure 3-44. Non-Secure Project Successful

Output

Show qutput froms | Build -

make: Mothing to be done for 'all'.
Done executing task "RunComoilerTask®.
Task "RunOutputFileVerifyTask"
Frogrom Memory Usage 2168 bytes
Data Memory Usage 16D bytes
Done sxecuting task "RunDutputfileWerifyTask'.
Done building target "CoreBuild” din project "My SAM L1l Project.cproj”.
Target "PostBuildEvent" skipped, due to false condition; ('3{PostBuildEvent)’

3.2 % Full
13.2 & Full

pone bullaing target "Bufld~ in project “My_SAM_L11 Project.corof~.
Done building project "My_SAM_L11_Project.cproj”.

Build succeeded.
---------- Build: 1 succeeded or up-to-date, @ foiled, @ skipped ==m=e=ses=

Build

1= "'} wes evaluated ms (' 1= '').

Target "Build™ in file "C:\Program Filec (x86)\Atmel\Studio\7.@\Vs)Avr.comnmon.targats” from prodect ~C:lMy_SAM L1l ProjectiMy_SAM_L11_Project'My_SaM_L11 Projact.

14. Launch the debug session and check the project is working.

© 2018 Microchip Technology Inc.

DS70005365A-page 50

AN5365
How to Develop a SAM L11 Application Under Atmel S...

Important: Debugging the Non-Secure project requires a compatible preprogrammed
Secure application that configures and starts the Non-Secure execution. If this Secure
application is not present on the chip, the debug process will hang.

© 2018 Microchip Technology Inc. DS70005365A-page 51

4.1

ANS365

How to Define and Use Secure and Non-Secure Periph...

How to Define and Use Secure and Non-Secure Peripherals

TrustZone for ARMv8-M Extension to Integrated Peripherals
The SAM L11 extends the concept of TrustZone to the ARMv8-M memory partitioning.

The management of the peripheral security attribution is done through the Peripheral Access Controller
(PAC).

Each peripheral security attribution is defined by programming their related User Row (UROW) fuse.

During Boot ROM execution, the NONSECXx fuses from the NVM User row are copied in the PAC
peripheral NONSECXx registers so that they can be read by the application.

Figure 4-1. PAC.NONSECx Register Description

OSCIZKCTR

70 GCLK SUFC QOSCCTRL RETC MCLK PM PAG
L
NONSECA 158 AC PORT FREQM ElC RTC WDT
2316
3124
70 HMATRIXHS DMAC NVMCTRL DsuU IDAU
158
NONSECE
2316
3124
70 ADC TC2 1 TCO SERCOMZ SERCOMI SERCOMO EVSYS
158 TRAM OPAMP CCL TRNG PTC DAC
NONSECC
23:16
31:24

Important: The peripherals security attribution cannot be changed during application run-time.
Any changes to the User Row fuses require a reset of the SAM L11 device.

Peripherals can be categorized in three groups depending on their PAC security attribution and their
internal secure partitioning capabilities (standard/mix-secure):

* Non-Secure peripheral: A standard peripheral configured as Non-Secure in the PAC. The security
attribution of the whole peripheral is defined by the associated NONSECx fuse set to one. Secure
and Non-Secure accesses to the peripheral are granted.

» Secure peripheral: A standard peripheral configured as Secure in the PAC. The security attribution
of the whole peripheral is defined by the associated NONSECx fuse set to zero. Secure accesses
to the peripheral are granted where Non-Secure accesses are discarded (Write is ignored, Read
0x0), and a PAC error is triggered.

* Mix-Secure peripherals: The SAM L11 embeds five mix-secure peripherals, such as PAC,
NVMCTRL, PORT, EIC and EVSYS, that allow part of their internal resources to be shared
between the Secure and Non-Secure applications:

— When a mix-secure peripheral is secured (NONSECXx fuse set to zero), the Secure world can
allocate internal peripheral resources to the Non-Secure world using dedicated registers.

© 2018 Microchip Technology Inc. DS70005365A-page 52

4.2

421

ANS365

How to Define and Use Secure and Non-Secure Periph...

— When a mix-secure peripheral is Non-Secure (NONSECXx fuse set to one), the peripheral
behaves as a standard Non-Secure peripheral. Secure and Non-Secure accesses to the
peripheral register are granted.

Note: For additional information, refer to the "Security" Chapter of the SAM L11 Family Data Sheet.

Peripherals Interrupts Handling

The code examples given in the following section shows how to allocate a Non-Secure handler and set
the interrupt priority of a specific interrupt vector.

Non-Secure Interrupt Handling

Secure: main.c ordriver.c

/* Set EIC EXTINT[1l] Interrupt as Non-Secure at core level */
NVIC SetTargetState (EIC_ 1 IRQn);

/* Set EIC EXTINT[1l] as Non-Secure interrupt (Mix-Secure Use) */

EIC SEC->NONSEC.reg = (EIC NONSEC EXTINT (1<<1));
EIC SEC->NSCHK.reg = (EIC_NSCHK EXTINT (1<<1));

Non-secure: main.c ordriver.c

/* Enable Interrupt at peripheral level*/
EIC->INTENSET.bit.EXTINT = EIC _INTENSET EXTINT (1<<1);

/* Enable EXTINT[1l] Non-Secure Interrupt */
NVIC EnableIRQ(EIC 1 IRQn);

Non-Secure main.c or driver.c or interrupt.c

/* Enable EXTINT[1l] Non-Secure Interrupt */
void EIC_1 Handler (void) {

/* Clear EIC EXTINT[l]interrupt flag */
EIC->INTFLAG.reg |= EIC_INTFLAG_EXTINT(1<<1);

.
The following figure displays the automatic clear of the CPU registers on the Secure to Non-Secure
handler transition:

Figure 4-2. Cortex-M23 Interrupt Mechanism

Run secure

code

Push Core registers

Pop Core registers Zero Core registers

Switch to secure Switch to Non-secure

Run Non-secure
Handler

Retum from Handler

Follow these steps for Interrupt Mechanism:

© 2018 Microchip Technology Inc. DS70005365A-page 53

ANS365

How to Define and Use Secure and Non-Secure Periph...

1. Processor status prior to Non-Secure interrupt.
Figure 4-3. CPU Registers Filled with Pattern in Secure Application

E samiit-xpro MiedSecureEIC (Debugging) - AbmeStudic (Administrater) Standaid Mode Y1 | Cunck Launch [Cir=() P - 0O x
Fle fdt View Vici ASF Project Buld [Debug Took Window Help
A R - -2 M - -| él_l Debug Srowser = -] ', =

B3 0p | Ar e THe B @, Ewme@E, |2, earsamniees |
maine ® X sterftug_samill.c main.c Processor Status
Name
WVIC_ErabLeIRQ{PAC_IAQn); Frogram Counter
J* Initislize the SAM systen */ main St“(k

Syctemlnit|]); fJC'fﬂfE'F'S and bain (I:[.amu
Frocess e8ack pante:

/* Initialize SERCOMA for Concole EDBS USE £DE Output */ ;JFOCESS Sf'{?fk
SERCOMA_Tnit(); . Execution Program Status
points to Non- | Fronty Mask

/* Initialize EIC for mix-secure use : Fauk Mask

= EXTINT[1] : Non-Secure secure world Ease Priority Mask

- BATINT[Z2] @ Secure . . CONTROL

= EXTINT[3] : Secure MSP Emit
=l P3P linnt ;
EIC SEC Init(); CONTROL 0:00000000

Setus Regste EEDMRO0OMm [(51.24

Set non-secure main stack (MSP_NS) */ Cycle Counter]
_TZ_sct_MSP_NS(*(({uint32_t *)(TZ_START_MS))}; Frequency 1900 MHz
Sop Watch 00 us
= Fegisters

200 CaCAFEDECA

J/® Start non-cecure state software application =/ "l QI.E#FE)E(&
HonSecure_RecetHandler(); Rib2 CxCAFEDECA
! 03 CuCAFEDICA

J® Sseure main routine whils loon / Rl CxCAFEDECA
while (1); 05 CxCAFEDECA
“PlJ Reaisters RS CuCAFEDECA

CPU Register: 7 CuCAFEDECA

(Forced to 8 CxCAFEDECA

9 CxCAFEDECA

OxCAFEDECA w0 CxCAFEDECA

11 CuCAFEDECA

value during I A FEDEC

RIS E Y Disassemibly Solution Explorer Properiies

/* Get non-secure reset handler *f
KonSecure_ResetHancdler = (funcptr_vodd) (*({uint32_t *)((TI_START_NS) + 4U)));

Qutput
Show cutput from: | Debug

Call Stack Ereakpointe Command Window Immediate Window RERGTY Blermnory 4

Stopped

2. Processor status during Non-Secure interrupt handler execution.

© 2018 Microchip Technology Inc. DS70005365A-page 54

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-4. Register Cleared Prior to Execute Non-Secure Interrupt Handler

Pl saML11-Kpro-MixedSecurcEIC (Debugging) - AbndStudic (Administrator)

File Edit View VAscist{ ASF Project Builld Debug Took Window — Help
|58 0-aEelxaa]2-c-l@al
B0 @t 2tk T B B EE R E 4 |

EIC

EC.c EC.c + X [rmes main.c

Standard Mode T1

¢ sarmil1e16a_flash.Id Sl ~
= EC1_Hzndler v 0> veid HC1_Handlerfvoid) - |{Go
* .
” main stack ¥
EIC.c -
- pointers and
* Creatad: 18/11/20817 4:59:33 PM
* Author: M33472 process stack
*f
#include "Drivers/Mix-Secure_peripherals/EIC.h" pOmf_‘» to Non--=
“woid EIC_1 Handler{void) | secure world
1© || NSC_SERCOMB_puts|™\n\r NON-SECURE : EXTIN 1 interrupt Handler ")
EIC->INTFLAG.reg |= ELC_INTFLAG EXTINT(1<<1);
T
=woid EIC_Init (woid)
i
/* Configure non-sec pin of EIC (see secure project main for non sec definitior
EIC- »CONFIG[8].bit.SENSEL - EIC_CONFIG_SENSEL_FALL Val;
EIC-»ASYNCH.reg - EIC_ASYNCH_ASYNCH(1<<1);
#* Configure Debounce */
EIC->DEBOUNCEN. reg = EIC_DEBOUNCEN_DESOUNCEN[1<<1);
/* Enable Interrupt at peripheral lewvel®/
ETC->INTEMSET.bit .EXTINT = ETC_INTENSET_EXTINT(1ccl):
/% Enable EXTINT[1] Mon secure Interrupt */
WVIC_EnablelRQUEIC_1_LRQn);
{/* Call Secure gateway function te Enable ELIC */
NSC_EIC_Enable(); . .
3 Automatic clear
of CPU Registers
v
ECE »
Cutput

Show output from: Debuyg

Debug Browser =

ATSAMLI1EI6A ;

Quick Launch (Ctrl+ () A o O x

Processor Status - 1 X
Mame Value

Frogram Counter 0000082456
Stack Pointer Ox20002418

ink Feniste QEEERECER
Main stack poirter Ox 20002418
Frocess stack pointer (HB00BELS
nterrupt Frogram Status ChU0uianTd
Execufion Program Status Ox01000000
Pricrity Mask 0200000000
Faul: Mask 000000000
Ease Priority Mask 000000000
CONTROL 000000000
MSP limit 000000000
P52 limit 000000000
CONTROL 000000000

Status Register
Cycle Counter

NODOWRO0Mm (.24
0

Frequency 1000 MHz
top Watoh 000 e

= Registers
ROD 000000000
RO1 000000000
RO2 000000000
RO3 000000000
RO 000000000
ROS Cx00000000
RO6 Cx00000000
RO7 020002418
RO Cx00000000
RO9 Cx00000000
R10 Cx00000000
Ri1 Cx00000000
R12 000000000

LMY Disassemoly Solution Explorer Properties

Call Stack Ereakpoints Command Window Immediate Window EOUGINE Memory 4

Stopped

3.

Ln10

Processor status during Non-Secure interrupt handler execution.

Coll

NS

© 2018 Microchip Technology Inc.

DS70005365A-page 55

4.3

431

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-5. Automatic Pop of Register Content When Back to Secure World

SAMLI1-Kpro-MiscdScourcEIC (Debugging) - AtmdStudic (Administrator)) Ok Launch (Chi- O £l=- O x
Eile Ecit View VicuctX ASF Project Build Debug Took Window Help
o - | r S e XD | - - & Debug Browser = B : ZFE ¥ R T :
> T S B R S I — e . g ATSAMUIIELGA

[T startup samillc mein.C * | POCessor Status = 0 x

» | nt main{void) Narma
KVIC_EnableIRQ{™AC_Ia0m);) 4 | FProgram Counter OR000006S
main stack o Stack Pomte B 20000400
/® Initialize the SAM pyctes %/ . v Hi
systenlnit(); pointers and Main stack pointer FZ000400
Pracess stack pamter 0976 AL
/* Tnitialize SERCOMD for Consals EDES LSE c0c output =/ PFOCESS StAck

SERCOM®_Tnit(): Beecution Pragram Status 0x01000000

point back to Prioity Mast 30000000
= f* Initislize EIC for mix-secure use - - Fauk Mask 000000000
[
= EXTINT[1] : Mom-Securs secure world Base Prioriny Mask Or00000000
- EXTINT[Z] : Secure v o CONTROL Dn0000000
- EXTINT[3] @ Secure MSF Emit Or00000000
! P52 limit On00000000
CIC_S0C Init(); CONTROL 2:00000000
Stetus Register BEZDESCO0E [31..24)
/* 5ct non-accure meln steck (MSP_NS) * Cycle Countes b
_TZ_set _MSP_NS{*({(uint32_t *)}(TZ_STAAT_NS))); Frequency 1.000 MH:
pgeiladal -
* Got secure reset handler */
#* Get non-secure .].-._. .:;ﬂ_:r ! « « = Regiiters
Nonsecure_ResetHandler = (funcptr_void)(*((uint32_t *)((TI_START_NS) + 4U}));
- proveid =5 AT 1 R00 CxCAFEDECA
/® Start non-cecure ctate software application *®/ Rl '-';Afﬂ:'::';”'
KenSecure_Recetdandlar(); R0z QuCAFEDECA
o IE GxCAFEDECA
/* Secure main routine whils loop */ R4 CxCAFEDECA
@) || wnile (1); Ros
¥ BO6
RO7
Ro8 CxCAFEDECA
< R09 CxCAFEDECA
Automatic POP R10 CwCAFEDECA
- : - Rl CxCAFEDECA
PU Register
O'ft - Lg Sr" 5 R12 CxCAFEDECA
- [— —

RIS IR Disassemibly Solution Exploier Properties
Cutput
Show output frone Debug

Call Stack Breakpointe Command Window Immediste Window [HEETE Memeory 4

Stopped

How to Use Non-Secure Peripherals

When a peripheral is allocated to the Non-Secure world, both Secure and Non-Secure applications can
access the peripheral registers.

At the Non-Secure world level, TrustZone for ARMv8-M considerations are totally transparent for the
developer. On the secure world side, the application should ensure that all the system resources required
by the peripheral are preconfigured or available to the Non-Secure world, such as PORT I/O, NVIC, DMA,
EVSYS, and so on.

Non-Secure Timer Counter 0 (TCO) Peripheral Use Case Example
This section provide an example of a Non-Secure TC use case.

In this use case, the Secure project is in charge of allocating PORT and TC peripherals to the Non-
Secure world, setting system clocks, and then jumping to the Non-Secure application.

The following figure displays the flowchart for the use case.

© 2018 Microchip Technology Inc. DS70005365A-page 56

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-6. Secure Main Routine Flow Chart

Secure

Secure
Main routine

Initialize System clock

Configure TCO
peripheral clock
channel

Allocate PAO7 (LED pin)
to Non-Secure world

Allocate TCO interrupt
to Non-Secure world

Prepare and jump to
MNon-Secure Reset
handler

————»

Secure main.c

The key software aspects of the Secure code are as follows:

© 2018 Microchip Technology Inc.

DS70005365A-page 57

ANS365

How to Define and Use Secure and Non-Secure Periph...

* TCO allocation to the Non-Secure world in fuses definition (define USER_WORD_6 as 0x00000010
in Secure application).

/* USER WORD X: User Row (UROW) Word X definitions */

#define USER WORD_0 0xBO8F437F /* BOD, Watchdog and Misc settings */

#define USER WORD_ 1 OxFFFFF8BB /* Watchdog and Misc settings */

#define USER WORD 2 0x40082080 /* Memories Security Attribution: AS = 0x80, ANSC = 0x20,
RS = 0x40 */

#define USER WORD 3 OxFFFFFFFF /* User Row Write Enable */

#define USER WORD 4 0x00000000 /* Peripherals Security Attribution Bridge A (NONSECA) */
#define USER WORD 5 0x00000000 /* Peripherals Security Attribution Bridge B (NONSECB) */
#define USER WORD 6 0x00000010 /* Peripherals Security Attribution Bridge C (NONSECC) */

» TCO peripheral clock configuration and interrupt allocation to the Non-Secure world (Secure
application).

/* Secure main () */
int main (void)
{
uint32 t ret;
funcptr_void NonSecure_ ResetHandler;

/* Initialize the SAM system */

SystemInit ();
/* Configure TCO peripheral clock channel */
GCLK->PCHCTRL[14] .reg =(GCLK PCHCTRL GEN (0) | //
GCLK_PCHCTRL CHEN); // Enable Generator

/* Allocate PAO7 (LED pin) to Non Secure world */
PORT SEC->Group[0] .NONSEC.reg = (PORT_PAQ7);

/* Allocate TCO interrupt to Non-Secure world*/
NVIC SetTargetState (TCO IRQn);

/* Set Non-Secure main stack (MSP_NS) */
__TZ set MSP NS (*((uint32 t *) (TZ START NS)));

/* Get Non-Secure reset handler */
NonSecure ResetHandler = (funcptr void) (*((uint32 t *) ((TZ START NS) + 4U)));

/* Start Non-Secure state software application */
NonSecure ResetHandler () ;

while (1)
{

_NOP();
}

This Non-Secure application illustrates the use of a Non-Secured TC and I/O port by generating a PWM
signal on the PAQ7 pin.

The following figure illustrates the flowchart of this process.

© 2018 Microchip Technology Inc. DS70005365A-page 58

44

ANS365

How to Define and Use Secure and Non-Secure Periph...

Get interrupt status

Initialize PAO7
as output
|
Initialize and enable TCO

Set PAO7 output
level to 1

Increment TCO Compare <
0 Value
I

Set PAO7output
level to 0

-+

Non-Secure main.c

Figure 4-7. Non-Secure Main Routine Flow Chart

Non-Secure

Non-Secure

Main routine

—

The TCO peripheral and PORT PAQ7 are allocated to the Non-Secure world. The Non-Secure application
can access them as standard peripherals without interaction with the Secure world.

How to Use Secure Peripherals

When a peripheral is allocated to the Secure world, only Secure accesses to its registers are granted,
and interrupt handling should be managed in the Secure world only. Two different software development
approaches can be followed depending on the software interaction requirements between Secure and
Non-Secure projects to use this peripheral.

© 2018 Microchip Technology Inc. DS70005365A-page 59

4.41

44.2

4421

4422

ANS365

How to Define and Use Secure and Non-Secure Periph...

Driving Secure Peripheral Without Non-Secure SW Interactions

When working with peripherals that do not require specific interaction with the Non-Secure world, the
Secure world will drive them as a standard peripheral without any specific TrustZone for Cortex-M
considerations.

Driving Secure Peripheral With Non-Secure SW Interactions
If interactions between Non-Secure and Secure worlds are required to drive the Secure peripheral, the
Secure application must provide Non-Secure callable APIs and callbacks to the Non-Secure world.

Non-Secure Callable APls

The Secure gateway decouples the addresses of the Non-Secure callable APIs (stored in NSC regions)
from the rest of the Secure code. All the project Secure gateways are expected to be placed in NSC
memory, where all other code from the Secure executable is expected to be placed in the Secure memory
regions. This limits the amount of code that can potentially be accessed by the Non-Secure state. This
placement is under the control of the developer.

Figure 4-8. Non-Secure Callable APIs Mechanism

MNon secure Secure NSC Secure
- — D " e = — e

1 . .
Branch (BL) 56 Branch (BL)
|

\

. :
| |
| |
I |
Non Secure Veneer | |
code I I

I |

| |

Return{BXNS)
b

(
|
|
|
|
|
|
|
|
\

Refer to the Secure and Non-Secure Functions Call for more details.

Non-Secure Software Callbacks
The Secure project should define and use software callbacks to execute functions from the Non-Secure
world. This is a consequence of separating Secure and Non-Secure code into separate executable files.

© 2018 Microchip Technology Inc. DS70005365A-page 60

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-9. Non-Secure Software Callbacks Flow Chart

Secure

Driver/Handler

Secure peripheral

management or

secure Algorithm

Non-5ecure
Callback

Secure peripheral

management or

secure Algorithm

Secure world

Non-Secure world

The management of callback functions is done using the BLXNS instruction. The following figure and
code illustrate the process.

© 2018 Microchip Technology Inc.

DS70005365A-page 61

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-10. Non-Secure Software Callback Mechanism

Non secure Secure NSC

—

ranch (BLXNS)

Non
Secure
code

Secure
API

Secure
function

--------m

[
|
|
|
|
|
|
|
|
|
|
|

h----------#

Branch (BX)

Note: A wrong use of pointers can lead to security weakness by enabling execution of any Secure
functions by the Non-Secure code. To overcome this disadvantages, ARM provides a set of CMSE
functions based on the new Cortex-M23 TT instructions.

In the previous figure, the CMSE function, cmse_check_pointed_object, is used to return the Secure state
of a specific address based on the product Secure memory attribution.

4.4.2.3 Secure Timer Counter 0 (TCO) Peripheral Use Case
This section provides an example of a Secure TC use in Secure and Non-Secure world . In this use case,
the Secure project is in charge of configuring system resources and managing the TC peripheral.

It provides specific TCO APIs and Non-Secure callbacks to the Non-Secure world. The following figure
displays the secure main function flowchart:

© 2018 Microchip Technology Inc. DS70005365A-page 62

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-11. Secure Main Routine Flowchart

Secure

Secure
Main routine

Initialize System clock

Configure TCO
peripheral clock
channel

Allocate PAO7 (LED pin)
to Non-Secure world

Prepare and jump to
MNon-Secure Reset
handler

EEE—

Secure main.c

The following APIs or veneers are provided to Non-Secure world to drive TCO peripheral from Non-

Secure world:

e tcO0 compare 0 interrupt callback register (secure void cb t pfunction);

e tcO0 overflow interrupt callback register (secure void cb_t pfunction);

e tcO0 init(void);

e tcO0 _set duty cycle(uint8 t duty cycle);

© 2018 Microchip Technology Inc.

DS70005365A-page 63

ANS365

How to Define and Use Secure and Non-Secure Periph...

The Non-Secure makes use of secured TCO through APIs/veneers provided by the secure world and
generates a PWM signal on PAQ7 pin. The following figures display the flowcharts of the application and
the interaction with the secure world.

Figure 4-12. Non-Secure Main Routine Flow Chart

Non-secure Non-secure callable Secure
Imtialize PA7 as
output
¥
Register “LED_on™ Register TCO CMO Register TCO CMO
as TCO CMO secure secure callback secure callback
callback veneer
|
L
Register "LED_off” Register TCO MCO Register TCO OVF
as TCO OVF secure secure callback secure callback
callback veneer
|
L 4
Initialize TCO » Imtialize TCO Initialize TCO
VENEET
|
¥
Decrease TCO duty . —]
cycles from 100% Set TCO duty cycle Set TCO duty cycle
to 0% Veneer VEneer
|
Non-Secure main.c veneer.c/.h Secure_tc.c

© 2018 Microchip Technology Inc. DS70005365A-page 64

4.5

ANS5365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-13. Secure TC Handler Flow Chart

Nen-secure Secure
Secure TCO
interrupt handler
i CMO interrupt?
LED On
>
i OVF interrupt?
LED Off
L
refurm
Non-Secure main.c Secure_tc.c

How to Use Mix-Secure Peripherals

The SAM L11 embeds five Mix-Secure peripherals, which allow part of their internal resources to be
shared between Secure and Non-Secure worlds.

The complete list of SAM L11 Mix-Secure peripherals and their shared resources are as follows:

Peripheral Access Controller (PAC): Manages the peripherals security attribution (secure or non-
secure).

Non-volatile Memory Controller (NVMCTRL): Handles Secure and Non-Secure Flash region
programming.

I/O Pin controller (PORT): Supports individual allocation of each 1/O to the Secure or Non-Secure
applications.

External Interrupt Controller (EIC): Supports individual assignment of each external interrupt to the
Secure or Non-Secure applications.

© 2018 Microchip Technology Inc. DS70005365A-page 65

ANS365

How to Define and Use Secure and Non-Secure Periph...

* Event System (EVSYS): Supports individual assignment each event channel to the Secure or Non-
Secure applications.

Refer to the Chapter "ARM TrustZone Technology for ARMv8-M" of the SAM L11 product data sheet for
more details.

The capability for a mix-secure peripheral to share its internal resources depends on the security
attribution of that peripheral in the PAC peripheral (PAC Secured or Not PAC Secured).

4.51 Mix-Secure Peripheral (PAC Secured)

When a mix-secure peripheral is PAC secured (associated PAC NONSECx fuses set to 0), the peripheral
register is banked and accessible through two different memory aliases as shown in the following figure:

Figure 4-14. PAC Secured Mix-Secure Peripheral Registers Addressing

Peripheral Base Address

[PERIPH->xxx)
Non-Secure Alias

Peripheral Base Address + Offset

[PERIPH_SEC-zxxx)

Secure Alias Peripheral Registers

Logical addressing Physical addressing

The Secure world can then independently enable Non-Secure access to the internal peripheral resources
using its NONSEC register.

The following figure shows the External Interrupt Controller (EIC) NONSEC register.

© 2018 Microchip Technology Inc. DS70005365A-page 66

4.5.2

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-15. NONSEC Register

Name: NONSEC

Offset: 0x40 [ID-00000c8b]

Reset: 0x00000000

Property: PAC Write-Protection, Write-Secure

Bi 3 ao 29 28 27 25 25 24
NMI
Access RW/R/RW
Reset 0
Bit 23 22 21 20 18 18 17 168
Access
Reset
Bi 15 14 13 12 10] 2
Accass
Reset
Bit T] 5 4 3 2 1 0
| EXTINT[F:0]
Access RW/R/RW RW/R/RW RW/R/RW RWI/IR/RW RW/R/RW RW/R/RW RW/RRW RW/RRW
Resat]]]]]]] 0

The NONSEC register content can only be modified by the Secure world through the peripheral register
Secure alias (for example, EIC_SEC.NONSEC).

Setting a specific internal feature bitfield in the NONSEC register enables the access to the different
bitfields associated to this feature in the peripheral Non-Secure alias.

Mix-Secure Peripheral (PAC Non-Secured)

When a Mix-Secure peripheral is PAC Non-Secured (associated NONSECx fuses set to 1), the peripheral
behaves as a standard Non-Secure peripheral.

Secure and Non-Secure accesses to the peripheral register are granted. The Peripheral register mapping
is shown in the following figure:

© 2018 Microchip Technology Inc. DS70005365A-page 67

4.5.3

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-16. PAC Non-Secured Mix-Secure Peripheral Registers Addressing

Peripheral Base Address
{PERIPH->xxx)

Peripheral Register table

Reserved

Peripheral Registers

Logical addressing Physical addressing

Management of PAC Non-Secured, Mix-Secured peripherals at the application level is similar to the
management of a standard Non-Secure peripheral.

Refer to the How to Use Non-Secure Peripherals for more information.
Mix-Secure Peripheral (PAC Secure) Use Case
The Secure EIC use case displays an example of a Secure External Interrupt Controller (EIC) in use.

In the example, the Secure project is in charge of configuring system resources, allocating EIC interrupt
line 1 to the Non-Secure world and managing the external interrupt on Secured interrupt line 2. The
following figure shows the Secure main function flowchart.

© 2018 Microchip Technology Inc. DS70005365A-page 68

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-17. Secure Application Flow Chart

Secure
Secure EXTINT 2
Main routine Handler
Initialize System clock Clear EXTINT 2
I Interrupt Flag
Allocate EIC EXTINT 1 |
to Non-Secure world Print information on
console
|
Allocate EXTINT _1
interrupt to Non-Secure Return
world
]
Configure EIC
EXTINT 2
]
Prepare and jump to
Mon-5ecure reset
handler
—

Secure main.c
In the example, the Non-Secure project is in charge of configuring and handling the EIC interrupt line 1,
which has been allocated to the Non-Secure world by the Secure application. The following figure
displays flowchart for this process:

© 2018 Microchip Technology Inc. DS70005365A-page 69

ANS365

How to Define and Use Secure and Non-Secure Periph...

Figure 4-18. Non-Secure Application Flow Chart

Mon-secure
Secure
Main routine
Initialize System clock Clear EXTINT 1
I Interrupt Flag
Configure EIC — I _
EXTINT 1 Print information on

console

Non-Secure main.c

© 2018 Microchip Technology Inc. DS70005365A-page 70

5.1

AN5365
SAM L11 Security Features Use Cases

SAM L11 Security Features Use Cases

TrustRAM (TRAM)

The TrustRAM (TRAM) embedded in the SAM L11 offers a set of advanced security features for Secure
information storage:

* Address and data scrambling

» Silent access

+ Dataremanence

* Active shielding and tamper detection

* Full erasure of scramble key and RAM data on tamper detection

The TrustRAM example provided with this document illustrates the configuration of TrustRAM with
security features configured as follow:

* Address and data scrambling activated with key: OXCAFE

+ Silent access enabled

» Data remanence enabled

* RTC static tamper detection enabled on PA8

* Full erasure of scramble key and RAM data on tamper detection enabled

In this example, the TrustRAM content is displayed and refreshed every second on a Secure console
(USARTO) allowing user to experiment with static and dynamic tamper detections coupled with a
TrustRAM full erase.

Figure 5-1. Use Case Application Output

. COM23:115200baud - Tera Term o ——

Eile Edit Setup Control Window Help

Bxabab Bxabab Bxa%ab Bxabab Bxabab Bxabab Bxabab -
Bxabab Bxabab BAxabab Bxabab Bxabab Bxabab Bxabab
Axabhabh Axabah Axababh Bxabab Axa5ab Bxabab BAxababh
Bxabab Bxabab BAxabab Bxabab Bxabab Bxabab Bxabab
Axabhabh Axabah Axababh Bxabab Axa5ab Bxabab BAxababh
Bxabab Bxabab BAxabab Bxabab Bxabab Bxabab Bxabab
Bxabab Bxabab BAxab%ab Bxabab Bxabab Bxabab Bxabab

Truzt RAM content {1z refreshd

Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab
Bxabab Axabab Bxabab Bxab%ab BAxab%ab Bxa5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab

Bxabab Axabab Bxabab Bxab%ab Bxab%ab BxaS5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab
Bxabab Axabab Bxabab Bxab%ab Bxab%ab BxaS5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxab%ab Bxab%ab Bxa5ab Bxabab Bxabab

Trust RAM content {1z refreshl

BxA000 @xA08080 Bx000R BxBE0E OA000 BxB000 BxBBEBE OAE00
Bx0008 BxBE0A AxBA88 BxAPRR BxB000 OxA008 BxBH0E
Bx0008 AxBB0E BB BxBA00 BxB000 O«ARBE BxBH0A
Bx Bx
B Bx
B Bx
5 s Ax
B Bx =
i

L

The following flowchart illustrates the secure main function with TRAM:

© 2018 Microchip Technology Inc. DS70005365A-page 71

5.2

ANS365

SAM L11 Security Features Use Cases

Figure 5-2. Use Case Application Flow Chart

Secure

System Initialize

Secure console init

Secure delay mmt

Secure RTC mut

Securs TRAM it

Fill TRAM with “OxA5”
pattern

Wait 1s

Display TRAM content
on secure console

Secure main.c

Cryptographic Accelerator (CRYA)

The SAM L11 embeds a hardware Cryptographic Accelerator (CRYA) with associated software functions
stored in Boot ROM which provide the hardware acceleration for:

* Advanced Encryption Standard (AES-128) encryption and decryption
* Secure Hash Algorithm 2 (SHA-256) authentication
* Galois Counter Mode (GCM) encryption and authentication

The CRYA example shown in the following figure illustrates the use of the CRYA for AES 128-bit key
length and the SHA-256 cryptographic algorithm.

© 2018 Microchip Technology Inc.

DS70005365A-page 72

AN5365
SAM L11 Security Features Use Cases

Figure 5-3. Use Case Application Output
(& COM23:115200baud - Tera Term VT (o o |

Eile Edit Setup Control Window Help

~== AES-128

Key : BxB8 B AxB 3 B =BS5S BxPh BxB7 BxBRE BxB? Bx BB xBc BxBd BxBe BxBF
AES-128 Plain text > £ xdd Bx55 Bxb6 Bx77 BxE8 chh Bxcc Bxdd Bxee BxFf
AES-128 cyphered text : BxbT Bxcd Bxeld Bxd8 Bxba BxYh BxB‘% Bx38 BxdB Bx Bxh? Bx80 Bx7TH Bxbd Bxch Bxha
AES-128 un-cyphered text : BxBB Bx11 Bx22 Bx33 Bx44 Bx55 Ox66 Bx77 BxB8 Bx99 Bxaa Bxhb Bxcc Bxdd Bxee Gxff

rl;uc t: ﬂa:h‘:"ld"‘?h? Bh')'ﬂdl’irﬂﬂ Bxa52e52d7 Bxda?dabfa BxcdB84efeld Bx7a53BBee BxYB8Bf7ac Bxelefcde? W

LS

The following figure shows the flowchart for this process:

© 2018 Microchip Technology Inc. DS70005365A-page 73

ANS365

SAM L11 Security Features Use Cases

Figure 5-4. Use Case Application Flow Chart

Secure

System Initialize

Secure console init

Print AES 128-bit Key
and 1nput text

Cypher text

Print cyphered text

Decrypt cyphered text

Print decrypted text

Print SHA-256
message

Print message digest

Secure main.c

© 2018 Microchip Technology Inc.

DS70005365A-page 74

5.3

ANb5365
SAM L11 Security Features Use Cases

Data Flash

The Data Flash embedded in the SAM L11 offers a set of advanced security features for secure
information storage:

* Data scrambling
« Silent access to selected row (TEROW)
» Tamper erase of selected row (TEROW) on tamper detection

The Data Flash use case shown in the following figure, illustrates the configuration of NVMCTRL for
secure Data Flash management:

« Data scrambling activated with key: “0x1234”
+ Silent access enabled on first Data Flash ROW

Figure 5-5. Use Case Application Output

. COMA43:115200baud - Tera Term VT . .

R ——

File Edit Setup Control Window Help

##ﬂﬂﬂﬂﬂﬂﬂﬂ#ﬂﬂ#ﬂﬂ#ﬂﬂ#ﬂﬂﬂﬂﬂﬂﬂ###############
it DataFlazh use—case example i
##ﬂﬂﬂﬂﬂﬂﬂﬂ#ﬂﬂ#ﬂﬂ#ﬂﬂ#ﬂﬂﬂﬂﬂﬂﬂ###############
— Enable DataFlash security feature

— Erase TEROW

Ax48868
Ax48868

: AAAAARA ANABRAAA
H808RE0A ABRBREER
A8AAAARA ABAAAAAA
A8AERA0A ABRE0A0A
A8AHARAA ABREAEAA
A8AERA0A ABRE0A0A
A8AHARAA ABREAEAA
A8AERA0A ABRE0A0A

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page B4 M

Page Ax488004E AAAABAAA ARBBARBE

— Write BxCAFEDECA Pattern in TEROU

Print TEROW cuntent :

Page Bx480088 : CAFEDECA CAFEDECAH
Page Bx480082 CAFEDECA CAFEDECAH
Page Bx480004 CAFEDECA CAFEDECAH
Page Bx480086 CAFEDECA CAFEDECAH
Page Bx480008 CAFEDECA CAFEDECAH
Page Bx48088A0 CAFEDECA CAFEDECAH
Page Bx48008C CAFEDECA CAFEDECAH
Page Hx480AAE CAFEDECA CAFEDECAH
Page Bx480048 CAFEDECA CAFEDECAH
Page Bx4800842 CAFEDECA CAFEDECAH
Page Bx480044 CAFEDECA CAFEDECAH
Page CAFEDECA CAFEDECAH
Page CAFEDECA CAFEDECAH
Page CAFEDECA CAFEDECA
Page CAFEDECA CAFEDECAH
Page CAFEDECA CAFEDECAH

— Print TEROW cuftent :

Ax480@84 -
Bx480086 -
Bx480088 -
Bx48008a0 -
Bx48888C -
Bx480@AE -
B4 :
B4 H
B4 :
A H
Bx H
Ax H

Pk ke ok ek ek ek () (]) ())) D

P kb ke ko ek ek (2 (])) SR D

© 2018 Microchip Technology Inc. DS70005365A-page 75

ANS365

SAM L11 Security Features Use Cases

The following figure illustrates the flowchart for this process:

Figure 5-6. Use Case Application Flow Chart

Secure

System Initialize

Enable Dataflash
Security features

Erase TEROW
(Dataflash ROWO)

Print TEROW content
(Dataflash ROWOQ)

Write OxCAFEDECA
pattern in TEROW

Print TEROW content
(Dataflash ROWO0)

Secure main.c

© 2018 Microchip Technology Inc.

DS70005365A-page 76

6.1

ANS365

Application Deployment with Secure and Non-Secure ...

Application Deployment with Secure and Non-Secure Bootloaders

The boot sections of the Flash memory allow the storage of Boot programs for a Secure and Non-Secure
application in a dedicated memory section, which is protected against the ChipErase_NS and
ChipErase_S commands.

Figure 6-1. SAM L11 Boot Sections

BOOT_S
BOOT_NSC
BOOT_NS

APP_S

APP_NSC

APP_NS

CMD CEx: NS S All

DATA_S

DATA_NS

CMD CEx: NS S All

The SAM L11 Boot sections are mainly designed to store In Application Programing solutions, such as
Secure and Non-Secure bootloaders. The following sections of this document explain the principle of
Secure and Non-Secure application deployment on the SAM L11.

Software Secure and Non-Secure Bootloaders Principle

A lot of modern embedded systems require application image updates to fix errors or support new
features. The main task of the software Secure and Non-Secure bootloaders is to download the
respective Secure and Non-Secure programs stored in the SAM L11 memories. This software makes use
of standard communication peripherals embedded in the product. This principle is called In Application
Programing, as it allows the software upgrade in-situ without the need of a SWD programming interface.
Firmware to be stored in the device can be sent by any host that is capable of communicating with the
SAM L11 through one of the interfaces supported by the software bootloader (i.e USART, TWI or SPI).

© 2018 Microchip Technology Inc. DS70005365A-page 77

6.2

ANS365

Application Deployment with Secure and Non-Secure ...

Figure 6-2. Secure and Non-Secure Bootloaders

\ MICROCHIP
SAM L11

Encrypted secure

Authenticated Host application binary

-
-
[
-
-
-
-
-
-
-
-

]

(PC f Microcontroller /
Microprocessor)

@ MICROCHIP

Non-secure SAM L11

Host application binary

(PC f Microcontroller /

Microprocessor) =
Std communication

SAM L11 Secure Boot

The SAM L11 Boot ROM is always executed at product startup. This software is ROM coded into the
device and cannot be avoided. Depending on the Boot Configuration Row (BOCOR) fuses setting, the
Boot ROM knows if a Secure boot code is used in the system. The Boot ROM then offers the possibility to
perform an integrity check or authenticate the firmware stored in the Secure Boot section prior to
executing it.

The verification mechanism provided in the Boot ROM is a key element to consider for ensuring root of
trust in the deployment and execution of Secure firmware.

© 2018 Microchip Technology Inc. DS70005365A-page 78

ANS365

Application Deployment with Secure and Non-Secure ...

Figure 6-3. Verification Mechanism

BootROM

(1) Check secure Boot Section integrity (optional)

(2) Start Secure bootloader
0x0000 0000

Secure bootloader

BS x 0x100 — BNSC x 0x20 ST e

BS x 0x100 nsc (optional)

Non secure Bootloader

BOOTPROT x 0x100

(BOOTPROT+AS) x 0x100
— ANSC x 0x20

(BOOTPROT+AS) x 0x100

0x1F40 0000

Flash (up to 64KB)

The Secure Boot code verification is done using the standard SHA256 hash algorithm that uses product
cryptography accelerator (CRYA). Both the Flash BS region and NVM BOCOR row hashes are computed
on row, and the memory area is defined by the BOOTPROT, BS and BSNC fuses.

Verification results are compared to their respective reference hash (256 bits/32 bytes) and stored by the
developer of the Secure bootloader in BOCORHASH fuses, and at the end of the Flash Secure Boot
section.

Figure 6-4. Boot Secure Reference Hash Location

0x00000000

BS

BS Reference Hash : 256bits (32 bytes)

BNSC

\J
BS * Granularity

© 2018 Microchip Technology Inc. DS70005365A-page 79

6.3

ANS365

Application Deployment with Secure and Non-Secure ...

Any mismatch in the value will reset the device and restart the Boot ROM process if no debugger is
detected by the SAML11 Debug Service Unit (DSU) (reset loop with no Flash code execution). The
SAML11 will put the Boot ROM in Boot Interactive mode if a debugger is detected (This is done to issue
the ChipErase_ALL command to clear the whole device content and reprogram it).

If the verification result is equal to the reference hashes, the Boot ROM starts the Secure bootloader
execution.

The following figure shows the definitions of the fuses used for configuring Secure boot process.

Figure 6-5. Secure Boot Process Configuration Fuses

Bit Pos. Name Usage Factory Setting Related Peripheral
I Baserved Beserved Resarved Fesared
158 BS Boot Flash Secure Size = BS"0x100 0=0 DAL
21:16 BNSC Boot Flash Non-Secure Callable Size = BNSC*0x20 0x0 DAL
324 BOOTOPT Boat Opbon Oxal Boot ROM
332 BOOTPROT Boot Protection sive = BOOTPROT*0x100 Ox00 NVMCTRL
4?.4Hmmed Reserved Reserved
45 BCWEN Boot Configuration Write Enable Ox1 NVMCTRL
45 BCREN Boot Configuration Read Enable Ox1 MNVMCTRL
6350 Reserved Reserved Reserved Reserved
9564 BOCORCRC Boot Configuration CRC for bit 63:0 0xC1DTECC3 Boot ROM
127:96 ROMVERSION ROM Code Version Ox0000003A Boot ROM
255128 CEKEYD Chip Erase Key 0 All 18 Boot ROM
3B3:256 CEKEY1 Chip Erase Key 1 Al s Boot ROM
511384 CEKEY2 Chip Erase Key 2 All 1s Boot ROM
635512 CRCKEY CRC Keay All 18 Boot ROM
I B9S640 BOOTKEY Secure Boot Key All 1s Boot ROM l
1791:686 Reserved Reserved Ressrved Reserved
20471792 BOCORHASH Boot Configuration Row Hash All 13 Boot ROM

BOOTPROT, BS and BSNC: Defines the configuration of the boot section in product Flash. The size of
the Secure, Non-Secure and Non-Secure-Callable boot sections can be customized according to the
application need. These fuses are used for security memory allocation in product IDAU and for integrity
and authentication mechanisms when configured in the BOOTOPT fuse. Any change of the fuse setting
requires a reset to be considered by the device as only the Boot ROM is allowed to change IDAU setting.

BOOTOPT : Defines the type of verification to be performed as either Secure and Non-Secure.

. 0: No verification method
* 1: Integrity check SHA256
. 2: Authentication check SHA-256 with BOOTKEY

Note: The use of the Secure Boot Authentication feature has an impact on the product startup time.
Refer to the product data sheet for more information.

BOOTKEY: Stores the SHA-256 result to be compared with the result of the selected Boot ROM
verification method execution. This value should be calculated and stored in advance by Customer A.

Custom Secure Software Bootloader

When required by the application, a Secure software bootloader should be stored in the Flash Boot
secure region to benefit from the Boot ROM verification mechanism and ChipErase protection.

© 2018 Microchip Technology Inc. DS70005365A-page 80

ANS365

Application Deployment with Secure and Non-Secure ...

Specific care should be taken when updating the Secure application using the bootloader. As the Secure
application may contain critical Secure code and data, the application firmware should not be vulnerable
to interception during the data transfer from the external source.

Note: Refer to the "Secure UART Bootloader for SAM L11" Application Note for additional information.

The following diagram shows general Secure bootloader execution steps:

Figure 6-6. Secure Software Bootloader Execution Steps

0x0000 0000

BS x 0x100 — BNSC x 0x20

BS x 0x100

BOOTPROT x 0x100

(BOOTPROT+AS) x 0x100
— ANSC x 0x20

(BOOTPROT+AS) x 0x100

Secure bootloader
(1)Check Entry
Secure bootloader
nsc (optional)

Non secure Bootloader

Secure project

Secure project
nsc (optional)

(2) Self-copy

(4) Update secure code

h (4) Update secure code

Secure bootloader

(3) Start communication
(5) Jump to secure code

SRAM (up to 16KB)

0x1F40 0000

Flash (up to 64KB)

The Software Bootloader Execution steps are as follows:

Bootloader Entry detection. Defines if the bootloader should be executed or not. For example, the
secure bootloader can run automatically if there is no valid application in the product secure
application, Flash memory region, and runs on the detection of an external request on a dedicated

Self copy to secure SRAM. As the Flash technology does not support the read-while-write
operation, and most bootloaders should have the possibility to update their own software, the
bootloader should be self-copied and executed from the SRAM. For this purpose the RXN (RAM is
eXecute Never) must be cleared in the device fuse setting.

Enable secure communication with host. Care should be taken at this step to not disclose critical
secure information, or allow unauthenticated host access to Secure bootloader features. Therefore,
it is recommended to manage host authentication, data encryption, and data integrity during the

Update secure code section. Decrypt and check the integrity of new code blocks sent by the host
and write them to the Secure memory regions.

1.
HW Entry pin.
2.
3.
transfer.
4.
5.

Jump to secure code. A reference software can be found in Secure UART Bootloader for SAM L11
application note, which is available for download at www.microchip.com.

© 2018 Microchip Technology Inc.

DS70005365A-page 81

http://www.microchip.com

6.4

ANS365

Application Deployment with Secure and Non-Secure ...

Custom Non-Secure Software Bootloader

When required by the application, a Non-Secure software bootloader should be stored in the Flash Non-
Secure region of the boot region for ChipErase protection. The software architecture of a Non-Secure
bootloader for SAM L11 is similar to the standard Cortex-M device bootloader.

This bootloader is executed prior to the Non-Secure application execution, and offers the possibility to
upgrade the Non-Secure application stored in the device.

The following figure shows standard Non-Secure bootloader execution steps.

Figure 6-7. Non-Secure Software Bootloader Execution Steps

0x0000 0000
Secure bootloader

BS x 0x100 — BNSC x 0x20 Secure bootloader

BS x 0x100 nsc (optional) (2) Self Copy to Non-Secure SRAM
Non-Secure Bootloader
BOOTPROT x 0x100 (1) Check BL Entry (4) Update Non-secure code

Secure project

(BOOTPROT+AS) x 0x100

— ANSC x 0x20 Non-Secure bootloader

Secure project

nsc (optional) (3) Start communication

(5) Jump to secure code

(BOOTPROT+AS) x 0x100

SRAM

Non secure Application

(4) Update Non-secure code

0x1F40 0000
Flash

Follow these Non-Secure bootloader execution steps:

1. Bootloader Entry detection: Defines if the bootloader should be executed or not. For example, the
Non-Secure Bootloader can run automatically if there is no valid application in the product Non-
Secure application Flash memory region, or run on detection of external request on a dedicated
entry pin. SSelf copy to secure SRAM:As Flash technology does not support the read-while-write
operation, and most bootloaders should have the possibility to update their own software, the
bootloader should be self-copied and executed from the SRAM. For this purpose the RXN fuse
(RAM is eXecute Never) from the UROW row must be cleared in the device fuse setting.

2. Enable communication with host.
3. Update Non-Secure code section.
4. Jump to Non-secure code.

The Secure boot can share functionality, such as communication protocol management with the Non-
Secure bootloader using the Non-Secure Callable boot region.

A reference software can be found along with UART Bootloader for SAM L10/ SAM L11 Application note,
which is available for download at www.microchip.com.

© 2018 Microchip Technology Inc. DS70005365A-page 82

http://www.microchip.com

ANS365

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

* Product Support — Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

* General Technical Support — Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative
* Local Sales Office
* Field Application Engineer (FAE)
» Technical Support
Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.

Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the
market today, when used in the intended manner and under normal conditions.

* There are dishonest and possibly illegal methods used to breach the code protection feature. All of
these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

* Microchip is willing to work with the customer who is concerned about the integrity of their code.

© 2018 Microchip Technology Inc. DS70005365A-page 83

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

ANS365

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings,
BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA,
SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom,
chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL
ICE, Ripple Blocker, SAM-ICE, Serial Quad 1/0, SMART-1.S., SQIl, SuperSwitcher, SuperSwitcher I, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018 Microchip Technology Inc. DS70005365A-page 84

ANS365

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-3234-0

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®
DSCs, KEELOQ® code hopping devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

© 2018 Microchip Technology Inc. DS70005365A-page 85

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC m

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2018 Microchip Technology Inc.

DS70005365A-page 86

	Introduction
	Table of Contents
	1. TrustZone for ARMv8-M Implementation in SAM L11
	1.1. Memory and Peripheral Security Attribution
	1.2. Secure and Non-Secure Code Execution
	1.2.1. Secure and Non-Secure Functions Call
	1.2.2. Secure and Non-Secure Interrupts Handling

	2. Application Deployment Considerations
	2.1. Debug Access Level (DAL) and Chip Erase
	2.2. Customer A and Customer B
	2.2.1. Single-Developer Approach
	2.2.2. Dual-Developer Approach

	3. How to Develop a SAM L11 Application Under Atmel Studio 7
	3.1. Create and Configure a Secure Project (Customer A)
	3.1.1. Create and Build the Solution
	3.1.2. SAM L11 Secure Solution Architecture
	3.1.2.1. Non-Secure Project
	3.1.2.2. Secure Project
	3.1.2.3. Project Properties
	3.1.2.4. Resources Attribution
	3.1.2.5. Project Linker Files
	3.1.2.5.1. Secure Project Linker File Content
	3.1.2.5.2. Non-Secure Project Linker File Content

	3.1.2.6. Secure Main Function
	3.1.2.7. Non-Secure Main Function
	3.1.2.8. Secure and Non-Secure Functions Call (secure.c/.h; veneer.c/.h)

	3.1.3. Debug the Solution
	3.1.4. Protect the Secure Application Using Debug Access Levels

	3.2. Create and Configure a Non-Secure Project (Customer B)
	3.2.1. Project Creation
	3.2.2. Project Configuration
	3.2.2.1. Align Project Linker File to the SAM L11 Non-Secure Memories Attribution
	3.2.2.2. Add and Link the Secure Gateway Library to the Non-Secure Project
	3.2.2.3. Add and Include Secure Gateway Header File

	4. How to Define and Use Secure and Non-Secure Peripherals
	4.1. TrustZone for ARMv8-M Extension to Integrated Peripherals
	4.2. Peripherals Interrupts Handling
	4.2.1. Non-Secure Interrupt Handling

	4.3. How to Use Non-Secure Peripherals
	4.3.1. Non-Secure Timer Counter 0 (TC0) Peripheral Use Case Example

	4.4. How to Use Secure Peripherals
	4.4.1. Driving Secure Peripheral Without Non-Secure SW Interactions
	4.4.2. Driving Secure Peripheral With Non-Secure SW Interactions
	4.4.2.1. Non-Secure Callable APIs
	4.4.2.2. Non-Secure Software Callbacks
	4.4.2.3. Secure Timer Counter 0 (TC0) Peripheral Use Case

	4.5. How to Use Mix-Secure Peripherals
	4.5.1. Mix-Secure Peripheral (PAC Secured)
	4.5.2. Mix-Secure Peripheral (PAC Non-Secured)
	4.5.3. Mix-Secure Peripheral (PAC Secure) Use Case

	5. SAM L11 Security Features Use Cases
	5.1. TrustRAM (TRAM)
	5.2. Cryptographic Accelerator (CRYA)
	5.3. Data Flash

	6. Application Deployment with Secure and Non-Secure Bootloaders
	6.1. Software Secure and Non-Secure Bootloaders Principle
	6.2. SAM L11 Secure Boot
	6.3. Custom Secure Software Bootloader
	6.4. Custom Non-Secure Software Bootloader

	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

