

A New Chapter: How Microchip's 8-bit Microcontrollers have Evolved for an Easy Design Journey

Every day, our world becomes increasingly centered around technology. Everything from doorknobs to the human heart have been enhanced through the integration of electronics. Beneath these advancements lies the unsung hero of the digital age: microcontrollers (MCUs). They can be quickly customized for various markets while maintaining a crucial balance between time-to-market, cost and optimization. Microchip's 8-bit MCUs offer a mix of memory, low-power modes and a robust suite of Core Independent Peripherals (CIPs) that can be easily harnessed by advanced developers and hobbyists alike.

Over the last ten years, Microchip's 8-bit MCUs have evolved to offer enhanced software and hardware capabilities that simplify the design process. Gone are the days when the choice of an MCU was primarily dictated by its bit size. Technological advancements have enabled 8-bit MCUs to take on tasks once thought beyond their reach.

As we dive deeper into the advancements of Microchip's 8-bit MCUs, let's explore how these pivotal changes have made the design journey easier and helped alleviate challenges faced by embedded design engineers.

Constraints and Challenges

Selecting the best MCU for an application involves balancing various constraints. For embedded engineers, effectively managing these constraints is crucial. Below, we explore the most common obstacles encountered in the field and the solution.

Trade-Offs

Problem: Balancing trade-offs is a fundamental challenge in embedded design. Engineers often need to compromise between competing factors such as performance, cost, power consumption and size. For instance, higher processing speed might increase power consumption, which can be problematic for battery-operated devices. Identifying the right balance to meet project requirements without exceeding budget or resource limitations is essential.

Solution: Microchip's 8-bit MCUs address this challenge by integrating Core Independent Peripherals (CIPs). These peripherals perform various functions without constant CPU interaction, allowing for the creation of smaller and more cost-effective devices. This reduces power consumption and simplifies design, helping engineers achieve an optimal balance between performance and efficiency.

Limited Resources

Problem: Embedded systems often operate under strict resource constraints, including limited memory, processing power and storage. These limitations necessitate efficient coding and optimization techniques to ensure the system performs its required functions without exhausting its resources.

Solution: Microchip's 8-bit MCUs come with a rich set of integrated features such as analog waveform control, communication protocols, timing system flexibility, low-power and safety peripherals. These built-in attributes reduce the need for external components, helping to manage limited resources effectively. Additionally, sophisticated CIPs can operate independently from the CPU core, enhancing efficiency when dealing with limited resources.

Complexity

Problem: As embedded systems become more sophisticated, their complexity increases. Managing this complexity involves designing and integrating multiple components and subsystems that must work together seamlessly. Complexity can lead to longer development times, increased costs and a higher risk of errors.

Solution: Microchip's 8-bit MCUs simplify the development process through improved development tools. Advanced Integrated Development Environments (IDEs), compilers, debuggers and programming tools, such as MPLAB® Code Configurator (MCC) Melody, facilitate the development and debugging of microcontroller applications. MCC Melody offers a flexible architecture, making it easy to generate understandable C code and configure devices and peripherals, thus managing and mitigating the complexity of modern embedded systems.

Picking the Right MCU

Choosing the right MCU can be daunting. First, consider the processing size and the number of device connections necessary to determine memory and pin count. Next, assess the design requirements to determine the necessary attribute set. Finally, evaluate cost restraints such as timelines, board space and power consumption to select the appropriate MCU and design environment.

The AVR® DD family of MCUs is an excellent starting point. The AVR DD family builds upon the low-power performance of the AVR architecture with a world-class selection of CIPs and a fully loaded intelligent analog portfolio, providing the freedom to innovate in designs. Its comprehensive feature set includes Multi-Voltage Input/Output (MVIO), making the AVR DD family well-suited for complex applications or as a companion MCU in complex designs with multiple power domains.

Beginning a project is straightforward with MPLAB X IDE and MCC Melody. For a head start, visit MPLAB Discover to explore a wide range of pre-made demos tailored for various MCUs. Leverage these development tools for Microchip devices and uncover projects, code examples and applications designed to accelerate the development process.