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The performance potential of SiC is indisputable. The key  

challenge to be mastered is to determine which design approach 

achieves the biggest success in applications. 
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Abstract 

Advanced design activities are focusing on the field of specific on-resistance as the major benchmark 

parameter for a given technology. However, it is essential to find the right balance between the primary 

performance indicators like resistance and switching losses and the additional aspects relevant for actual 

power electronics designs, e.g. sufficient reliability. 

 

Device design philosophy 
A suitable device concept should allow a certain design freedom in order to adapt to the needs of various 

mission profiles without significant changes in processing and layout. However, the key performance 

indicator will still be a low area-specific resistance of a chosen device concept, ideally in combination 

with the other listed parameters. Figure 1 lists a few parameters that are considered essential, more 

could be added. 

 

 

Figure 1 Selected parameters (right) which have to be balanced with performance indicators 

(left) of a SiC MOSFET 

One of the most important acceptance criteria is the reliability of the device under the operating 

conditions of its target applications. The major difference to the established silicon device world is the 

fact that SiC components operate at much higher internal electric fields. Related mechanisms need to be 

analyzed carefully. What they have in common is that the total resistance of a device is defined by the 

series connection of contact resistances at drain and source, including the highly doped areas close to 

the contact, the channel resistance, the resistance of the JFET area, and the drift zone resistance (see 

figure 2). Note that in high-voltage silicon MOSFETs, the drift zone clearly dominates the total 

resistance; in SiC devices, the part can be designed with a significantly higher conductivity as stated 

above. 
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Figure 2 Sketch of planar DMOS SiC MOSFETs (left), and vertical trench, TMOS SiC MOSFETs, 

and the corresponding location of resistance-relevant contributions 

Regarding the key MOSFET element, the SiC-SiO interface, the following differences as compared to 

silicon have to be considered: 

 

› SiC has a higher surface density of atoms per unit area compared to Si, resulting in a higher density of 

dangling Si- and C- bonds; defects located in the gate oxide layer near the interface may appear in the 

energy gap, and act as traps for electrons [1]. 

› The thickness of thermally grown oxides strongly depends on the crystal plane. 

› SiC devices operate at much higher drain-induced electric fields in the blocking mode compared to 

their Si counterparts (MV instead of kV), which requires measures to limit the electric field in the gate 

oxide to maintain reliability of the oxide in blocking stage [2]. See also figure 3: for TMOS, the critical 

point is the trench corner, and for DMOS, the center of a cell. 

› SiC MOS structures show for a given electric field a higher Fowler-Nordheim current injection 

compared to Si devices due to a smaller barrier height. Consequently, the electric field on the SiC side 

of the interface must be limited [3, 4]. 

 

The above-mentioned interface defects result in a very low channel mobility. Therefore, they cause a 

high contribution of the channel to the total on-resistance. Thus, the advantage of SiC versus silicon in 

the form of a very low drift zone resistance is diminished due to the high channel contribution. An 

observed way to overcome this dilemma is to increase the electric field applied across the oxide in on-

state, either higher gate source (V ) bias for turn-on or comparably thin gate oxides. The applied electric 

fields exceed the values usually used in silicon-based MOSFET devices (4 to 5 MV/cm vs. 3 MV/cm 

max. in silicon). Such high fields in the oxide in the on-state can potentially accelerate wear, and limit the 

capability of screening remaining extrinsic oxide defects [1]. 
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Figure 3 Left: Typical structure of a planar MOSFET (half-cell) revealing two sensitive areas 

with respect to oxide field stress. Right: Typical structure of a trench MOSFET (half-

cell), critical issue is the oxide field stress at the trench’s corners. 

Based on these considerations, it is clear that planar MOSFET devices in SiC actually have two sensitive 

areas with respect to oxide field stress, as sketched in the left part of figure 3. First, the discussed stress 

in reverse mode in the highest electric field area close to the interface between drift region and gate 

oxide, and secondly, the overlap between gate and source which is stressed in on-state. 

 

A high electric field in on-state is seen as more dangerous, since no device design measures are in 

place which could reduce the field stress during on-state as long as the on-resistance performance has 

to be guaranteed. Infineon’s overall goal is to combine the low RDS(on) offered by SiC with a working 

mode in which the part operates in the well-known safe oxide field-strength conditions. Hence, it was 

decided to forgo DMOS technology and to focus on trench-based devices from the beginning. Moving 

away from the planar surface with its high-defect density towards other more favorable surface 

orientations enables a low channel resistance at low oxide fields. These boundary conditions are the 

baseline for transferring quality assurance methodologies established in the silicon power semiconductor 

world in order to guarantee FIT rates expected in industrial and automotive applications. 

 

 

Figure 4 Sketch of the CoolSiC™ MOSFET cell structure 
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The CoolSiC™ MOSFET cell design was developed to limit the electric field in the gate oxide in on-state 

as well as in off-state (see figure 4). At the same time, an attractive specific on-resistance for the 1200 V 

class is provided, achievable even in mass production in a stable and reproducible way. The low on-

resistance is ensured driving voltage levels of only VGS = 15 V combined with a sufficiently high gate-

source-threshold voltage of 4.5 V typically, being a benchmark in the landscape of SiC transistors. 

Special features of the design include the orientation of the channel at a single crystallographic 

orientation via a self-aligned process. This ensures highest channel mobility and narrow threshold 

voltage distributions. Another feature is the deep p-trenches intersecting the actual MOS trench in the 

center in order to allow narrow p+ to p+ pitch sizes for effective screening of the lower oxide corner.  

Static performance – first quadrant operation 

The key parameter of the static output characteristic of a MOSFET is the total resistance RDS(on) .The 

typical on-resistance of the CoolSiC™MOSFET is defined at room temperature and for a VGS = 15 V 

(figure 5, left). The threshold voltage VGS_TH follows the physics of the device, and drops with 

temperature as shown in figure 5 on the right. 

 

 

 
 

Figure 5 CoolSiC™ MOSFET output characteristics (example 45 mΩ 1200 V type) for room 

temperature and 175°C (left) and dependence of Ron and VGS_TH on temperature (right) 

The positive temperature coefficient of the on-resistance (figure 5, right) as an outcome of the low-

channel defect density makes the devices predestined for use in paralleling. This is another significant 

difference to DMOS devices, which usually show a weaker dependence of the resistance on temperature 

due to the high density of defects in the channel. 

 

  

Output Characteristics typical RDS(on) /VGS_TH vs. Tj
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Figure 6 Principal behavior of the on-resistance for MOSFETs as a function of temperature, 

comparison between Si and SiC as well as impact of the blocking voltage 

This DMOS “feature” at first glance sounds attractive; however, with progress towards lower on-

resistances, the physically justified temperature dependence of the drift zone will increasingly dominate 

the total on-resistance. Thus, SiC MOSFETs will become more silicon-like. However, it should be noted 

that even in a mature state the actual temperature coefficient of SiC MOSFETs would be lower than for 

silicon devices at the same blocking voltage due to the higher absolute doping densities. Furthermore, 

the temperature dependence of the on-resistance will be more pronounced for higher blocking voltages 

due to the increasing contribution of the drift zone to the total resistance. The qualitative behavior is 

summarized in figure 6. 

 

Static performance – third quadrant operation 

In contrast to IGBTs, a vertical MOSFET such as the CoolSiC™ device offers conduction in reverse 

mode via the body diode, practically a freewheeling diode. However, due to the band gap of SiC, the 

knee voltage of this diode is relatively high (around 3 V), so that a continuous operation would result in 

high conduction losses. Consequently, it is mandatory to use the well- known synchronous rectification 

concept. The diode works just for a short dead time as a diode (see above sections). After this period, 

the channel is turned on again by applying a positive VGS (like in the first quadrant mode). 

 

This operation scheme offers very low conduction losses in the third quadrant mode, since no knee 

voltage is in place achieving the same resistance as in first quadrant mode. In fact, the resistance is 

even slightly lower, since the JFET impact is reduced due to a negative feed-forward impact of the now 

inverted current flow direction. Figure 6 illustrates the third quadrant operation (I-V characteristic for 

different gate voltages). Please note that due to the p-n diode structure also a certain pulse current 

handling capability (higher than in forward mode) can be achieved. 

 

Ubr 

Tj

Ron
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Figure 7 Body diode I-V behavior for a 45 mΩ CoolSiC™ MOSFET 

Dynamic performance 

Being a unipolar device, the dynamic performance of the SiC-MOSFET is largely governed by its 

capacitances. The device was designed to have a small gate-drain reverse capacity Crss compared to the 

input capacity Ciss. This is beneficial for suppressing parasitic turn-on, which can prevent the use of 

sophisticated gate driver circuitry when operated in a halfbridge configuration. Many CoolSiC™ 

MOSFET products can be turned off safely even with 0 V at the gate, since in addition to the favorable 

capacitance ratio the threshold voltage is sufficiently high. The total device capacitances as a function of 

temperature are summarized in figure 8 (left). 

 

Figure 8 (right) displays the typical switching losses of a half bridge with single devices mounted in a  

4-pin TO-247 housing as a function of drain current. The turn-off energy Eoff depends only slightly on the 

load current, since it is dominated by capacities, whereas the turn-on energy Eon increases linearly with 

current, and dominates the total losses Etot. Based on the status from mid-2019, it should be emphasized 

that the CoolSiC™ MOSFET shows the lowest Eon among the commercially available  

1200 V SiC MOSFETs. Eon and Eoff are practically independent of temperature. Important to note is the 

fact that the actual housing design has a significant impact on switching losses, mainly on turn-on 

losses. Especially effective is the use of Kelvin contacts, which practically separate the load path from 

the control path in terms of current, and thus, help to prevent di/dt induced feedback loops to the gate 

signal increasing the dynamic losses. 

 

  

Body Diode Characteristics
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Figure 8 Typical device capacitance vs. drain-source voltage for a 45 mΩ CoolSiC™ MOSFET 

(left) and related switching energies (right) as a function of drain current 

(for VGS = 15/-5 V, RGext = 4.5 Ω, VDS = 800 V, Tvj = 175° 

In general, it is essential to implement fast-switching SiC transistors with low capacitances and gate 

charges in certain packages only. Major criteria include good thermal performance due to the high-loss 

power density (absolute losses are reduced with SiC of course, but the remaining ones are concentrated 

in very small areas). Another criterion is a low stray inductance for managing high di/dt slopes without 

critical voltage peaks. Finally, especially in the case of multichip packages with more die in parallel, a 

symmetric inner module design based on the strip line concept [5] is mandatory. Current module 

packages offering such features are the EASY platform by Infineon for modules, or the TO247 family, 

respectively TO263-7, for discrete housing. 

 

The gate charge curve for CoolSiC™ MOSFETs is usually different from the typical shape of silicon 

power devices; in particular, there is no clear Miller plateau visible, as indicated in figure 9 left. The total 

gate charge Qtot amounts to typically 75 nC for ID = 30 A, VDS = 800 V and RG = 3.3 kΩ at VGS(off) = -5 V  

to VGS(on) = 15 V. 

 

 

 
 

 

 
 

 

Figure 9 Typical gate charge curve for a 45 mΩ 1200 V CoolSiC™ MOSFET (left) and 

controllability of the switching speed via RG (right) 
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In many cases, there might be a need to adjust the switching speed (dv/dt) in order to deal with 

oscillations, etc. One benefit of MOSFETs is the simple way of adjusting the slopes via the gate resistor. 

Combined with the right driver circuit, it may even be different for turnon and turn-off. Figure 9 on the 

right shows the corresponding behavior for Infineon’s 45 mΩ 1200 V CoolSiC™ MOSFET. 

 

Figure 10 depicts the short-circuit waveforms for 45 mΩ 1200 V CoolSiC™ MOSFET in TO-247 4-pin 

and TO-247 3-pin, at a DC voltage of VDS = 800 V, which differs significantly from the IGBT. Initially, the 

drain current increases rapidly and reaches the peak current level. Because of fast turn-on with the 

Kelvin-source design, the TO-247 4-pin current rises faster, and has less self-heating at the beginning of 

the SC event with high peak current exceeding 300 A, while the TO-247 3-pin has a smaller peak 

current. The major reason is a negative feedback induced by the di/dt against the applied VGS in the case 

of the 3-pin device. Since this effect is eliminated in the Kelvin connection solution, which enables faster 

switching, the current can also rise to higher values for the 4-pin device before the saturation effect takes 

place. 

 

After peak current, the drain current is significantly decreased to about 150 A. This is due to the 

reduction in carrier mobility and JFET effect with temperature increase and selfheating. The test 

waveform shows clean, robust behavior, which proves the typical 3 μs SC capability for both packaged 

TO-247 CoolSiC™ MOSFET and power modules (currently 2 μs according to the related target 

application requirements). Infineon’s CoolSiC™ MOSFET is the first device with a guaranteed short 

circuit in the data sheet. 

 

 

 

 

 
 

 

 

 
 

 

Figure 10 Typical short circuit as a function of duration time at 25°C (left); avalanche behavior of 

a 1200 V device, turn-off of an unclamped inductive load of 3.85 mH at 60 V (right) 
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The new 650 V class devices are accompanied with an avalanche rating in the data sheet to meet the 

requirements of the target-application power supplies. In general, the CoolSiC™ MOSFET technology 

shows high ruggedness under avalanche; figure 10, on the right, depicts the typical behavior of a 1200 V 

component. 

 

FIT rates and gate-oxide reliability 

Besides performance, reliability and ruggedness are the most discussed topics for SiC MOSFETs. 

Ruggedness is defined as the capability of a device to withstand certain extraordinary stress events, for 

example, short-circuit performance or pulse-current handling capability. Reliability covers the stability of 

the device under nominal operating conditions over the targeted application lifetime. The effects relevant 

to reliability include the drift of certain electrical parameters or catastrophic failures. For hard failures, the 

quantification is usually done in the form of FIT rates, which actually state how many devices of a certain 

type are allowed to fail over a certain period. FIT rates in high-power silicon devices are mostly governed 

today by cosmic ray effects.  

 

In the case of SiC, an additional influence from gate-oxide reliability needs to be considered due to the 

oxide field stress as discussed earlier. Thus, as indicated in figure 11, the total FIT rate is the sum of 

cosmic ray FIT rates and oxide FIT rates. For cosmic ray stability, a similar approach can be applied 

such as the one typical in the silicon sector. Here, FIT rates are obtained experimentally for a certain 

type of technology, and based on the results, in combination with the application targets, a design can be 

implemented that meets the FIT rates, usually achieved by optimizing the electric field distribution in the 

drift zone. For the oxides FIT rates, a screening process needs to be applied to reduce the FIT rates, as 

defect densities in SiC are still quite high compared to silicon (in the case of Infineon’s Si power devices, 

the screening of gate oxides still takes place as a quality assurance measure). 

 

 

 
 

Figure 11 FIT rate constitution in the case of SiC MOSFETs 

The challenge of the gate-oxide reliability of SiC MOS devices is for example to guarantee a maximum 

failure rate of less than 1 FIT under given operation conditions in industrial applications (as is available 

today for IGBTs). Since the intrinsic quality and properties of SiO2 on SiC and on Si are almost identical, 

Si MOSFETs and SiC MOSFETs of the same area and oxide thickness can withstand roughly the same 

oxide field for the same time (same intrinsic lifetime). Of course, this is only valid if the devices do not 
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contain defect-related impurities, i.e., extrinsic defects. In contrast to Si MOSFETs, SiC MOSFETs 

exhibit a much higher extrinsic defect density in the gate oxide. 

 

Devices with extrinsic defects break down earlier in comparison to devices that are free of defects. 

Defect-free devices will fail much later due to intrinsic wear. Typically, intrinsic failure times are far less 

frequent under normal application conditions if the bulk oxide thickness is sufficient. Consequently, the 

oxide FIT rate within the typical chip lifetime is exclusively determined by extrinsic defects. 

 

The challenge of guaranteeing a sufficient reliability of the gate oxide of silicon carbide MOSFETs is to 

reduce the number of devices being affected by extrinsic defects from an initially high number at the end 

of process (e.g. 1%) to an acceptably low number when the products are shipped to the customer (e.g. 

10 ppm). One well-established way to achieve this is to apply electrical screening [2]. 

 

During electrical screening, each device is subjected to a gate-stress pattern. The stress pattern is 

selected to destroy devices with critical extrinsic defects, while devices without extrinsic defects, or those 

with only non-critical ones, survive. Devices that do not pass the screening test are removed from the 

distribution. In this way, a potential reliability risk is converted to yield loss. 

 

To be able to stress-test devices at a sufficiently high stress level, the bulk gate oxide needs to have a 

specified minimum thickness. In case the gate oxide thickness is too low, devices will either fail 

intrinsically during screening because of wear or show a degraded threshold voltage and channel 

mobility after screening. As a result, a nominal oxide thickness is needed that is much higher than what 

is typically needed to fulfill the intrinsic lifetime targets for efficient gate-oxide screening. Unfortunately, a 

thicker gate oxide increases the threshold voltage, and decreases the channel conductance at a given 

VGS(on). The trade-off between gate oxide FIT rate and device performance is illustrated in Fig. 12 and 

was also discussed in [6]. 

 

 

 
 

Figure 12 Impact of gate-oxide thickness and gate voltage on failure probability and on-state 

properties (RDS(on) data for 650 V devices) 
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Infineon has invested a significant amount of time and material samples to develop a complete picture 

regarding the MOS reliability for SiC MOSFETs. As an example, we have tested the on-state reliability of 

electrically screened SiC MOSFETs for 100 days at 150°C using three individual stress runs at different 

positive and negative gate-stress biases. Each sample group consisted of 1000 pieces. Figure 13 

indicates the results for the different gateoxide process conditions, sketching the technology 

improvement towards the finally released process. Using the initial processing conditions, at twice the 

recommended gate bias of 30 V, less than 10 out of 1000 devices failed. The implemented technology 

progress reduced this number to only one fail at 30 V, and zero fails at 25 V and -15 V. This one 

remaining failure is still an extrinsic failure, but it is not critical, as it will occur far beyond the specified 

product lifetime under the nominal gate-bias use conditions. 

 

 

 
 

Figure 13 Evaluation of on-state failure rate for different processing conditions 

It is of course also important to assess the off-state oxide stress in addition to the on-state oxide 

reliability due to the electric field conditions in SiC power devices being much closer to the limits of SiO2 

than in silicon power MOS components. The key strategy is an efficient shielding of the sensitive oxide 

areas by a proper design of deep p-regions. The efficiency of the shielding is again a trade-off between 

on-resistance and reliability. In the case of the trench MOSFET, the deep p-regions which form JFET-like 

structures below the channel zone of the MOSFET can facilitate the shielding effectively [7]. This JFET 

adds an additional component to the on-resistance that mainly depends on the distance and the doping 

between the buried p-regions. This shielding structure design feature is crucial to avoid gate-oxide 

degradation or gate oxide breakdown in the off-state. 

 

To verify the off-state reliability of the CoolSiC™ MOSFETs, we have stress-tested over 5000 1200 V 

SiC MOSFETs for 100 days at 150°C, VGS = -5 V and VDS = 1000 V. These conditions correspond to the 

most critical point of the mission profile for industrial applications. A further acceleration is very difficult 

due to restrictions in the applied drain voltage with respect to the breakdown voltage of the device. 
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Running the tests at even higher drain voltages will falsify the results, as other failure mechanisms such 

as cosmic-ray induced failures would become more likely. The result was that none of the tested devices 

failed during this off-state reliability test. As the 650 V device follows the same design criteria as the 

1200 V device, the same reliability is expected. 

 

Conclusion 

The CoolSiC™ MOSFET features superior performance in terms of switching behavior and total losses. 

One of the highlights is the possibility to turn off the device with zero gate bias, which makes the 

CoolSiC™ transistor concept the only true “normally-off” device at the moment. 
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