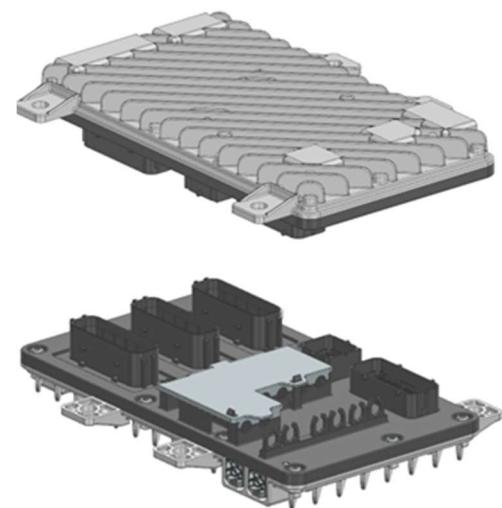
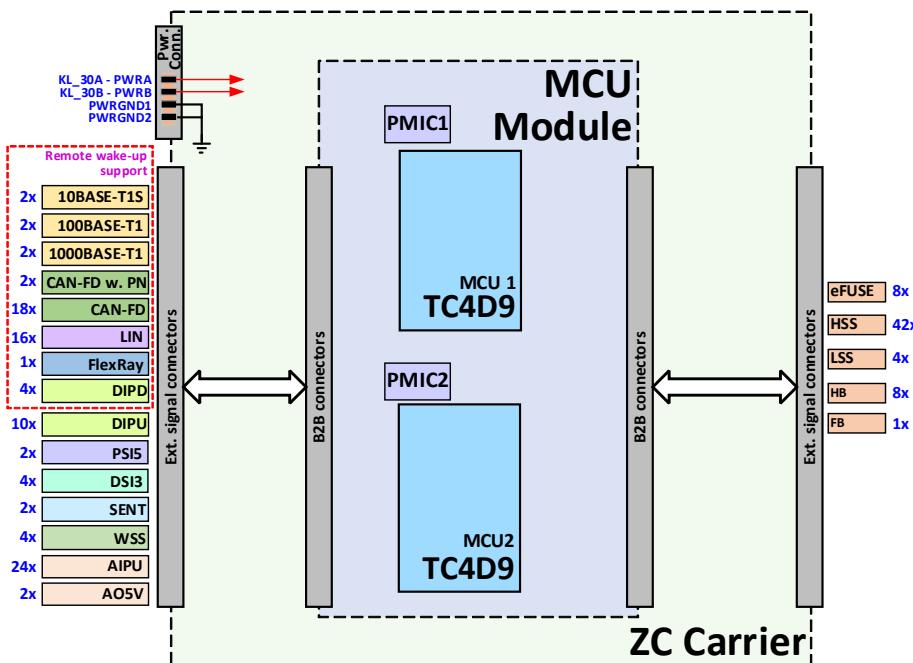


Flex Zone Controller Platform

A scalable and innovative Zone Controller for Software-Defined Vehicles


Overview

Comprised of the power distribution (PD) system and the in-vehicle network (IVN), legacy E/E architectures are organized in domains connected via gateways. However, the software-defined vehicle (SDV) trend and wire harness optimization are driving a shift towards zonal architectures with central computing.


The Flex Zone Controller platform is a game-changing solution that enables OEMs to rapidly implement and optimize their Zone Controller solutions. Built on common building blocks and featuring a modular MCU architecture, this platform provides a flexible and scalable solution for zone control unit implementation.

The Flex Zone Controller platform is a scalable and innovative Zone Controller reference design for SDVs. A Zone Controller typically covers a range of functions, including:

- Power distribution and management
- Sensor data aggregation, processing and analysis
- Actuation and control of various vehicle systems
- Communication with central computing, and other zone controllers or ECUs
- Diagnostic and fault detection capabilities

Block Diagram and Modular Build

Key Features

Features	Benefits
Redundant power supply	If one of the battery supply fails, the Zone Controller is still powered, increasing overall safety.
Dual MCU solution	Besides fail-safe mode, fail-operational mode can also be supported with proper configuration.
High performance MCUs	Up to 2x6.81k DMIPS real-time CPU performance.
Large SRAM and NVM	Up to 2x10MB SRAM + 2x21MB NVM memory in the MCUs.
Very low power mode	The overall quiescent current can be as low as 5mA typ. w. functional degradation.
2x 1000BASE-T1⁽¹⁾	Can be connected to the HPC and one of the ZC at the same time. One of the interfaces can be upgraded to 2500BASE-T1, if required.
2x 100BASE-T1⁽¹⁾	Can be connected to other Zone Controllers that require high bandwidth.
2x 10BASE-T1S⁽¹⁾	Can be connected directly to new sensors supporting this interface.
2x CAN-FD with partial networking⁽²⁾	Allowing for selective wake-up of specific ECUs on the network while others remain in a low-power state (reducing the overall power consumption) w. data rates up to 5 Mbit/s.
18x CAN-FD⁽²⁾	A wide range of ECUs can be connected to the ZC w. data rates up to 5 Mbit/s.
16x LIN⁽²⁾	Allows low-cost connections to dozens of cheap ECUs.
1x Flex Ray⁽²⁾	Allows up to 10Mbit/s communication w. a deterministic and fault tolerant bus.
2x PS15	Allows bidirectional communication up to 125 kbps.
4x DS13	Allows up to +12 ultrasonic sensors (w. +3 sensors per input).
2x SENT	Can be upgraded to SPC protocol w. master trigger pulse to have synchronized sensor readings for redundant sensors.
4x WSS	Three-wired wheel speed sensor (can be upgraded to two-wire speed sensor)
4x DIPD⁽²⁾	Digital Input with pull-down impedance
10x DIPU	Digital Input with pull-up impedance.
24x AIPU	Analog Input with pull-up impedance.
2x AO5V	5V analog output (tracking ADC VREF) w. max. 2x 300mA load current support for analog sensors and analog input pull-up impedances.
8x eFUSE	Allows I ₂ t protection in real-time in HW; short-to-battery, and short-to-ground fault detection; load current feedback w. overcurrent protection
42x HSS	High-Side Switch w. short-to-battery, and short-to-ground fault detection; load current feedback w. overcurrent protection
4x LSS	Low-Side Switch w. status feedback
8x HB	Half-Bridge suitable for driving motors w. short-to-battery and short-to-ground fault detection; load current feedback w. overcurrent protection.
1x FB	Full-Bridge for BDC motors w. short-to-battery and short-to-ground fault detection; load current feedback w. overcurrent protection.

(1.) Ethernet interfaces support Open Alliance TC10 specification for low power mode with remote wake-up, respective IEEE 802.1AE: MACsec, and IEEE 802.1AS: Timing and Synchronization specifications.

(2.) Supports remote wake-up of the Zone Controller from a very low power mode.

Target Applications

- Automotive Zone Controller
- Automotive Gateway
- Advanced Driver Assistance Systems