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Warranty

Performance Motion Devices, Inc. warrants that its products shall substantially comply with the specifications
applicable at the time of sale, provided that this warranty does not extend to any use of any Performance Motion
Devices, Inc. product in an Unauthorized Application (as defined below). Except as specifically provided in this
paragraph, each Performance Motion Devices, Inc. product is provided “as is” and without warranty of any type,

including without limitation implied warranties of merchantability and fitness for any particular purpose.

Performance Motion Devices, Inc. reserves the right to modify its products, and to discontinue any product or service,
without notice and advises customers to obtain the latest version of relevant information (including without limitation
product specifications) before placing orders to verify the performance capabilities of the products being purchased.
All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement and limitation of liability.

Unauthorized Applications

Performance Motion Devices, Inc. products are not designed, approved or warranted for use in any application where
failure of the Performance Motion Devices, Inc. product could result in death, personal injury or significant property
or environmental damage (each, an “Unauthorized Application”). By way of example and not limitation, a life support
system, an aircraft control system and a motor vehicle control system would all be considered “Unauthorized
Applications” and use of a Performance Motion Devices, Inc. product in such a system would not be warranted or

approved by Performance Motion Devices, Inc..

By using any Performance Motion Devices, Inc. product in connection with an Unauthorized Application, the
customer agrees to defend, indemnify and hold harmless Performance Motion Devices, Inc., its officers, directors,
employees and agents, from and against any and all claims, losses, liabilities, damages, costs and expenses, including
without limitation reasonable attorneys’ fees, (collectively, “Damages”) arising out of or relating to such use, including
without limitation any Damages arising out of the failure of the Performance Motion Devices, Inc. product to

conform to specifications.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must

be provided by the customer to minimize inherent procedural hazards.

Disclaimer

Performance Motion Devices, Inc. assumes no liability for applications assistance or customer product design.
Performance Motion Devices, Inc. does not warrant or represent that any license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property right of Performance Motion
Devices, Inc. covering or relating to any combination, machine, or process in which such products or services might
be or are used. Performance Motion Devices, Inc.’s publication of information regarding any third party’s products or

services does not constitute Performance Motion Devices, Incs approval, warranty or endorsement thereof.
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1.The Juno IC Family 2

In This Chapter
Introduction
Family Overview
Juno IC Developer Kits
Guide to the Documentation

1.1 Introduction

This manual describes the Juno family of velocity & torque control ICs from Performance Motion Devices, Inc.,
consisting of the MC71113, MC73113, and MC78113 ICs for velocity control of Brushless DC, DC Brush, and step
motors, the MC74113, MC74113N, MC75113, and MC75113N ICs for control of step motors, and the MC71112,
MC71112N, MC73112, and MC73112N ICs for torque control of Brushless DC and DC Brush motors.

PMD Corp.’s Juno ICs are ideal for a wide range of applications including precision liquid pumping, laboratory
automation, scientific automation, flow rate control, pressure control, high speed spindle control, and many other

robotic, scientific, and industrial applications.

The Juno family provides full four quadrant motor control and directly inputs quadrature encoder, index, and Hall
sensor signals. It interfaces to external bridge-type switching amplifiers utilizing PMD Corps proprietary current and
switch signal technology for ultra smooth, ultra quiet motor operation.

Juno ICs can be pre-configured via NVRAM for auto power-up initialization and standalone operation with SPI (Serial
Peripheral Interface), direct analog, or pulse & ditection command input. Alternatively Juno can interface via SPI, point-
to-point serial, multi-drop serial, or CANbus to a host microprocessor.

Internal profile generation provides acceleration and deceleration to a commanded velocity with 32-bit precision.
Additional Juno features include performance trace, programmable event actions, FOC (field oriented control),

microstep signal generation, and external shunt resistor control.

All Juno ICs are available in 64-pin TQFPs (Thin Quad Flat Packages) measuring 12.0 mm x 12.0 mm including leads.
The step motor control ICs and torque control ICs are also available in 56-pin VQFN (Very thin Quad Flat Non-leaded)
packages measuring 7.2 mm x 7.2 mm. These VQFN parts are denoted via a “N” suffix in the part number.
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‘. The Juno IC Family

1.2 Family Overview

The following table summarizes the operating modes and control interfaces supported by the Juno IC family:

Note that the MC78113 IC allows the motor type to be selected by the user. It provides all of the operating modes
indicated for the MC71113, MC73113, and MC74113 Juno ICs.

MC74113
MC74113N
MC75113
MC75113N MC71112 MC71113 MC73112 MC73113
MC78113 MC71112N MC78113 MC73112N MC78113

Motor Type & Control Mode

Motor Type Step motor DC Brush DC Brush Brushless DC Brushless DC
Velocity 4 v
Torque/current 4 4 4 v v
Position & outer loop 4 v
Host Interface
Serial point-to-point 4 4 4 v v
Serial multi-drop 4 v
SPI v v
CANbus 4 v
Command Input
Analog velocity or torque v v 4 v
SPI velocity or torque v 4 v v
Pulse & direction v v
SPI position increment v v
Motion I/O
Quadrature encoder input v (MC74113 & v v v
MC741 13N only)
Hall sensor input 4 v
Tachometer input 4 v
AtRest input v
FaultOut output 4 4 4 v v
HostInterrupt output v 4 4 v v
Amplifier Control
PWM High/Low v 4 v v v
PWM Sign/Magnitude v
DC Bus & Safety
Shunt 4 4 v v
Overcurrent detect 4 4 v v v
Over/undervoltage detect v v v v 4
Temperature input 4 4 4 v v
Brake v 4 v 4 v

10 Juno Velocity & Torque Control IC User Guide




The Juno IC Family A

1.3 Juno IC Developer Kits

Three different Juno developer kits are available. All of the 64-pin TQFP package Juno ICs are supported via the
DK78113 developer kit board. The DK part numbers differ in the specific type of Juno IC that is installed.

Developer Juno IC

Kit P/N Installed Motor supported Comments

DK71112 MC71112 DC Brush Torque control

DK7I1113 MC71113 DC Brush Velocity & torque control

DK73112 MC73112 Brushless DC Torque control

DK73113 MC73113 Brushless DC Velocity & torque control

DK74113 MC74113 Step Motor Provides quadrature encoder input
DK75113 MC75113 Step Motor No quadrature encoder input
DK78113 MC78113 Multi-motor (Brushless DC, DC  velocity & torque control with user-

Brush, Step Motor) settable motor type

The 56-pin VQFN IC package step motor ICs are supported by the DK74113N developer kit board. The DK part
numbers differ in the specific type of Juno IC that is installed.

Developer Kit Juno IC Motor

P/N Installed Supported Comments

DK74113N MC74113N Step Motor Provides quadrature encoder input
DK75113N MC75113N Step Motor No quadrature encoder input

The 56-pin VQFN IC package torque control ICs are supported by the DK73112N developer kit board. The DK part
numbers differ in the specific type of Juno IC that is installed.

Developer Kit Juno IC Motor

P/N Installed Supported Comments
DK71112N MC71112N DC Brush Torque control
DK73112N MC73112N Brushless DC Torque control

Each developer kit includes:
* Standalone board with easy to access connectors for fast setup and testing
*  Pro-Motion autotuning and axis wizard setup software
* Complete Juno manual PDFs

¢ Extensive application schematic examples
pp p

1.3.1 Pro-Motion AutoTuning And Setup Software

The figure below shows a typical Pro-Motion to Juno development kit connection setup.

Juno Velocity & Torque Control IC User Guide 11




‘. The Juno IC Family

Figure 1-1:
Juno
Development
Setup
Connection
Overview

12
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PMD’s Pro-Motion windows-based motion development system, which is included with all Juno developer kits,
communicates directly to the Juno Developer Kit board. Pro-Motion provides numerous useful application
development features including:

* Easy to use Axis Setup Wizard

Motion trace display showing up to four simultaneously captured variables
* Frequency-based control optimization tools including Bode plot generator
*  Motion development project save and retrieval

* Complete access to all Juno features and parameters

*  NVRAM configuration

1.4 Guide to the Documentation

The Juno IC family is notable for the number of different control functions provided and motor types supported.
While there are five different manuals specific to the Juno ICs, for a given application you will often need just one, or
a smaller number of user guides. This is detailed in the table below:

Juno Function Primary Reference Companion References
Velocity Control Juno Velocity & Torque Control IC User MC781 |3 Electrical Specifications
Guide is a superset description of the Juno Velocity & Torque Control IC Programming Reference.

entire Juno IC family.

Torque Control Juno Torque Control IC User Guide provides  Juno Velocity & Torque Control IC User Guide

a convenient all-in-one reference for the Juno Velocity & Torque Control IC Programming Reference
Juno ICs that provide this dedicated
control function.

Step Motor Control  Juno Step Motor Control IC User Guide Juno Velocity & Torque Control IC User Guide

provides a convenient all-in-one Juno Velocity & Torque Control IC Programming Reference
reference for the Juno ICs that provide

this dedicated control function.

Juno Velocity & Torque Control IC User Guide




2.Functional Overview

In This Chapter

Internal Block Diagram

Signal Connections Overview

Juno IC Operating Modes

Control Flow Overview

Typical Applications

Juno Cycle Time & Loop Rates
Motor Specific Versus Multi-Motor Juno ICs

Host Commands

Juno ICs in the Production Application

2.1

Enable
FaultOut

Reset

Host/Standalone
Command SPI

CANbus 2.0

Serial (point to point
& multi-drop)

HostInterrupt

Analog
Command

BusCurrentSupply  Shunt

BusVoltage

A
Temperature

Internal Block Diagram

A

A

System Signal

Y

Y

Y

Drive & DC Bus Safety

» PWM Outputs

Brake

I[e} t ¢
< - k PWM
: Velocity | |Phasing, uStep PWM Lf Generation | o
-l Host & | Loop & Current Loop |
Standalone |4 ! |
_ .| Command ! |
= 7 | 7| Processing | Position/Outer Profile
I Loop Generation | | Analog |
- : | Processing|
| MC78113 Logic Core :
Analog Y Y Y Y
Processing
Analog I;iiif‘n Quadrature, Index Hall Signal
Processing Decode Decode & Capture | | Processing
A A [y A
Tachometer Pulse, Quad A, B, HallA, B, C
Direction, Index
AtRest

Current Inputs

Juno ICs are single-axis devices for velocity, torque, or voltage-mode control of three-phase brushless DC motors, DC

Brush motors, or two-phase step motors. In addition Juno ICs can provide position control and control of “outer loop”

quantities such as pressure and temperature when control of these quantities is related directly to the action of the motor.

Juno Velocity & Torque Control IC User Guide

Figure 2-1:
MC78113
Internal Block
Diagram
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At power-up or reset, Juno checks for the presence of stored configuration commands in its NVRAM. If NVRAM is
programmed, the stored configuration commands are read into the chip, providing parameter information that will be
used during operation. If no initial configuration is stored in NVRAM, then default values are used and information
will then be sent by serial, CANbus, or SPI from a host device such as a microprocessor.

Depending on how the control loop has been configured an external analog signal may serve as the velocity or torque
command value, an SPI (Serial Peripheral Interface) data stream may be used for the command value, or pulse &

direction signals may provide a position command datastream. Alternatively an internal profile generator commanded
by a host microprocessor via the serial, CANbus, or SPI communication port may be used to generate current, velocity,

or outer loop command values.

Juno provides control of the motor position as well as outer loop quantities such as pressure or temperature via a PID
(Proportional Integral Derivative) filter. Position control utilizes the incoming pulse & direction datastream to
command step motor positions as well as Brushless DC or DC Brush motors. Outer loop control uses either the

Tachometer analog signal or the digital SPI port to feedback the measured pressure or temperature.

Juno’s velocity loop receives commands directly from analog or digital SPI circuitry or from the ‘upstream’ position/
outer loop. The measured velocity may come from encoder, Hall sensor, or tachometer feedback. A PI loop, dual

biquad filters, and a deadband filter allow a very wide range of precision velocity control applications to be addressed.

Current loop control is performed via direct input of analog signals representing the instantaneous current through
the motor coils. These signals are typically derived from external dropping resistors or Hall sensors at the amplifier
circuitry. This analog current information is then combined with the desired current for each phase to generate PWM

signals.

To create a complete velocity or torque controller Juno is connected to switching amplifiers, typically MOSFET or
IGBT-based. A programmable dead time function and other timing control parameters ensure that switch

synchronization and control is optimal over the entire operating range of the driven motor.

A number of safety features are incorporated into the Juno ICs including I’t current limiting, brake signal input, DC

bus overvoltage and undervoltage detect, overcurrent detect, and overtemperature detect.

2.2 Signal Connections Overview

Figure 2-2 shows an overview of the connections used with Juno family ICs.

For additional information on Juno signals refer to the MC78773 Electrical Specifications.
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2.3 Juno IC Operating Modes

Juno can be used in one of two overall operating modes; as a standalone motor control IC driven by direct input
command signals, or as an intelligent motor controller driven by a microprocessor or other controller sending high
level host commands via serial, CANbus, or SPI.

2.3.1 Direct Command Operating Mode

Velocity,
Torque, or |
Position NVRAM!
Analog, Command | :
Direct InputSPl, —M8M8M8M8M8M8 »  —~~~~ »  Amplifier Motor
or Pulse & Direction Juno IC

When using Juno in direct command mode a continuous torque, velocity, position, or outer loop command is provided
via external circuitry using analog, digital SPI, or pulse & direction signals. In this operating mode the configuration
settings and gain parameters required by Juno are typically stored in advance into the internal NVRAM.

Upon powerup Juno reads the NVRAM, initializes itself according to this configuration information, and begins
operation. See Chapter 12, Power-up, Configuration Storage & N
storing data into the Juno’s NVRAM.

IVRAM, for more information on different options for
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Figure 2-4:
Host Command
Connections

Figure 2-5:
Juno Control
Flow Overview
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2.3.2 Host Command Operating Mode

Juno Host
. Command
Serial, Packets
CANbus, Juno IC | Amplifier Motor
Or Host SPI

When using Juno ICs in host command mode a microprocessor or other programmable controller sends high level
command packets. In this mode the NVRAM may still be used to store initialization information, but it is more

common for the host microprocessor to send these initialization commands directly after powerup of the Juno IC.

The choice of direct input or host command operation of Juno is application specific. Even if direct input operation

is used in the final application, host commands will at a minimum be used to program Juno’s initialization NVRAM
configuration.

2.4 Control Flow Overview

SPI Direct Input O- -~
I

I
Analog O--+ " Current Loop &
:—».—» Posnll_c;r;/Outer > Velocity Loop | Commutation/ | Motor Output Mot_o_r
Profile Generator O- — -1 P Microstep Amplifier
I
I
Pulse & Direction O~ -~ A A t
Current Feedback
Command
Source Hall Feedback (BLDC Only)
Quadrature Feedback
G o

Tachometer Signal

Figure 2-5 provides a control flow overview for the Juno IC. It shows how a final motor command is generated
starting with the command source and ending with the motor output module that generates amplifier control output
signals. Each of the major blocks within this control flow diagram is referred to as a loop control module.

The following table provides a brief description of each of the Juno loop control modules:

Module Name Function

Position/Outer Loop This module is used with servo motors only. It inputs the commanded position (the

instantaneous desired axis position) and the actual position (the measured motor
position), and passes the resultant position error (the difference between the
commanded and the actual position) through a PID filter. When functioning as a
pressure or temperature (outer loop) controller the functionality is similar but the
commanded value is the outer loop value and the actual value is the measured outer
loop value.

Velocity Loop This module is used with servo motors only. It inputs a commanded velocity and an

actual velocity to generate a velocity error which is then passed through a Pl filter.
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Module Name Function

Current Loop This module inputs the commanded current along with the actual current and uses a Pl
filter along with FOC (field oriented control) current control technology to generate
motor voltage commands for each motor phase. For multi-phase motors such as
Brushless DC and step motor this module also performs waveform generation.

Motor Output This module inputs the motor phase commands and generates the appropriate
electrical signals based on the selected electrical output format.

Depending on the type of motor used some modules may not be utilized. For example, step motots do not use a
velocity loop. In addition, some modules may not be used for specific applications. For example the position/outer

loop module and the velocity loop module are not used in torque-mode amplifier applications.

2.5 Typical Applications

Most Juno control applications fall into one of a few setup configurations in terms of which modules are enabled and
which are disabled, what the input command sources are, and what the feedback sources are. A number of the most

common setup configurations are summarized in the following sections.

2.5.1 Velocity Control of Brushless DC and DC
Brush Motors

+HY Figure 2-6:
Velocity Servo Motor
E— -

Velocit

Anzlroi,):tl’l, Command MC78113 or .| 3-Phase Brushless Y
. MC73113IC *| Bridge DC Motor Control

Microprocessor — Diagram

A A

Current Feedback

Abpplications: General purpose amplifier, spindle control, centrifuge control, drug infusion, precision liquid pumping, tnrbine control.

In this configuration the Juno MC71113, MC73113, or MC78113 IC receives direct analog or direct input SPI (Serial
Peripheral Interface) commands representing the instantaneous desired velocity, or host microprocessor commands
representing the desired velocity profile. Quadrature encoder feedback, Hall sensors, or a tachometer are utilized for
velocity feedback. For Brushless DC motors Hall sensors normally provide commutation feedback. If encoder signals
are available however Halls are not required as long as the motor can move freely during startup (allowing PMD’s pulse

phase initialization to be used).

In the diagram above a Brushless DC motor is shown but similar velocity control can be provided for DC Brush

motors. The diagram below shows the Juno control loop configuration for this application.
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Figure 2-7:
Servo Motor
Velocity
Control Loop
Structure

Figure 2-8:
Servo Motor
Torque Control
Diagram

18

SPI Direct Input O--~  Velocity

: Command
I

Analog O ————»@—»{ Velocity Loop

I
Profile Generator O——"~

- Current Loop

Servo Motor

| Motor Output Amplifier

Velocity
Feedback

’

N

Current Feedback

Hall Feedback (BLDC Only)

Quadrature Feedback

Tachometer Signal

2.5.2 Torque Control of Brushless DC and DC Brush

Mlotors

+HV

Torque
Analog, SPI, Command
or Host
Microprocessor

MC73112
or
MC73112N

3-Phase
Bridge

i

Current Feedback

Brushless
DC Motor

-

Ehcodér & Ha" ‘Seﬁéor Féedbéck h

Applications: General purpose amplifier, spindle control, centrifuge control, drug infusion, precision liquid pumping, turbine control.

In this configuration the Juno MC71112, MC71112N, MC73112, or MC73112N IC receives direct analog or direct
digital SPI (Serial Peripheral Interface) commands representing the instantaneous desired torque, or host
microprocessor commands representing the desired torque profile. For Brushless DC motors Hall sensors normally
provide commutation feedback. If encoder signals are available however Halls are not required as long as the motor
can move freely during startup (allowing PMD’s proprietary pulse phase initialization to be used).

The above diagram shows a Brushless DC motor but similar torque control can be provided for DC Brush motors.

The diagram below shows the Juno control loop configuration for this application.
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SPI Direct Input O--,  Torque
I Command s Mot
Analog O——?-ﬂ—» Current Loop »| Motor Output ——» ervo Wotor
|

Amplifier
I
Profile Generator O- -’

Current Feedback

Phase
Angle

P

{
¢

Hall Feedback (BLDC Only)

Quadrature Feedback

2.5.3 Pulse & Direction Control of Step Motors

+HV

Pulse ———— » H-Bridge Step
MC78113, Motor
Direction ————p»] MC74113, or
MC75113IC
AtRest — P » H-Bridge

Current Feedback

Encoder Feedback

Applications: General purpose step motor drive, laboratory antomation, liguid handling, scientific instruments, printers, XY stages.

In this configuration a microprocessor, PLC (programmable logic controller), dedicated motion control IC, or other
external profile generator provides pulse, direction, and (optionally) at rest signal commands to the Juno MC74113,
MC75113, or MC78113 IC.

The above diagram shows pulse & direction command input but SPI (Serial Peripheral Interface) incremental
commands may also be used for position command input. The diagram below shows the Juno control loop

configuration for this application.

AtRest
Position
SPI Direct Input O~~~ Command Microstep Step Motor
I>——->Q—> Generation & - Motor Output ———» Amblifier
Pulse & Direction O- - - Current Loop P

L

Quadrature Feedback (MC74113 Only)

Current Feedback
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Figure 2-12:
Pulse &
Direction
Control of a
Servo Motor

Figure 2-13:
Position Mode
Servo Amplifier
Loop Structure
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2.5.4 Pulse & Direction Control of Servo Motors

Pulse ——— ]

Direction ———p»

MC78113 or

MC73113IC

+HV
—
| 3-Phase Brushless
Bridge DC Motor
— | —

Current Feedback

Encoder &‘ Hall Sensor Feedback

Applications: General laboratory antomation, liguid handling, scientific instruments, printers, XY stages.

In this configuration a microprocessor, PLC (programmable logic controller) dedicated motion control IC, or other
external profile generator provides pulse and direction command signals to the Juno MC73113 or MC78113 IC.

Although a Brushless DC motor is shown in the diagram, a DC Brush motor may be similarly controlled. The diagram
below shows the Juno control loop configuration for this application.

Position
Pulse & Direction O- -, Command

Profile Generator O —

——»@ Position/Outer

Loop

Servo Motor

- Current Loop » Motor Output

Amplifier

Position
Feedback

1

{ \

t

Current Feedback

Hall Feedback (BLDC Only)

Quadrature Feedback
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2.5.5

Motors
P
Analog, SPI, cé;sr:l;r:d
or Host

Microprocessor

Applications: Pressure control, flow control, temperature control, magnetic bearing control, galvanometer control, liquid level control.

In this configuration the Juno MC71113, MC73113, or MC78113 IC receives direct analog or direct digital SPI (Serial
Peripheral Interface) commands representing the instantaneous desired pressure or temperatutre or host
microprocessor commands representing the desired pressure or temperature profile. A pressure or temperature sensor
provides an analog or direct input SPI feedback signal. Although a Brushless DC motor is shown in the diagram, a

MC78113 or
MC73113IC

+HV

\

3-Phase
Bridge

Encoder & Hall Sensor Feedback

Current Feedback

<

{50
2\
R

BRI

L

e

Ty
et

Pressure & Temperature Control With Servo

Brushless DC
Motor Pump

%%

T
RRKAL

vy

T,

e
290905
%
bo2eS
hete!
&K

25
%
k3]
ot
b
k5]
k5]
%!
B
b
k2]
B
b
b5
k53]
%!
b2
o
ole!
*4%

TR
tY‘!‘w’:’:’O’O
%

o
35
%
62529

Figure 2-14:
Pressure
Control With a
Servo Motor

. Pressure
Sensor

ole!
botule!
S

S
S0es
% A%A 4

L

aletatity’
pole!

5
eeleletee!

%
o
o
o

5
55
25
!

25
S

8

DC Brush motor may be similarly used.

Other types of “outer loop” control can be achieved with Juno as long as the measured quantity has a roughly linear
relationship with the motor spin rate or dtiven actuator output. These controllable quantities/processes include

pressure, temperature, flow rate, liquid level, magnetic bearing control, chemical reaction control, phase change

control, and others.

Pressure Feedback

The diagram below shows the Juno control loop configuration for this application.

SPI Direct Input O- -+ Pressure
I Command

Analog O--— —:»-—».—»

I
Profile Generator O- -~

Position/Outer
Loop

\J

Velocity Loop

Current Loop

\i

Motor Output |—m

Pressure
Feedback

(

o

[

3

Velocity
Feedback

A}

Current Feedback

Hall Feedback (BLDC Only)

Quadrature Feedback

Tachometer Signal Input
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Figure 2-16:
Torque Control
With Magellan
Motion Control
IC Diagram

Figure 2-17:
Magellan
Connected
Torque Control
Loop Structure
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2.5.6 Torque Control with Magellan Motion Control
IC Servo Applications

_ |[DC Brush
Axis  Axis —»] MC71112 > otor —
Out In
To Host MG73112 . grcl;s'\l;letss |
Microprocessor _ otor
Magellan Motion SPI
SPI, Serial, y > C(t)ntzol IC
CANbus, or Parallel (up to 4 axes)
e ~—p] _ | | Brushless
MC73112 > | Dc Motor —
Limit Home —
Switches Inputs \ ) _ rushless
P MC73112 > | bC Motor —

Applications: General purpose multi-axis motion control, laboratory antomation, scientific instruments, XY stages, multi-dimensional

contouring, semiconductor equipment.

PMD’s Magellan Motion Control ICs provide up to four axes of profile generation, position servo loop control, pulse
& direction signal generation, and numerous other synchronization and control features. In this application one or
more Juno ICs connect to the Magellan IC and provide high performance current control and motor amplifier
management for Brushless DC, or DC Brush motors.

In this configuration the Juno MC71112, MC71112N, MC73112, or MC73112N IC accepts a continually changing
torque command via a SPI data stream, and drives the motor at those torque values using analog current feedback
signals from the motor. The above diagram shows an SPI connection to the Juno ICs but a direct analog command

input may be similarly used.

The diagram below shows the Juno control loop configuration for this application.

Torque
SPI Direct Input O-—-, Command
»——@—»| Current Loop | Motor Output Sirvo IIY'I,.Otor
Analog O--" mplifier
Phase Current Feedback
Angle

Hall Feedback (BLDC Only)

Quadrature Feedback
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2.6 Juno Cycle Time & Loop Rates

Juno ICs calculate all profile generator, position/outer loop, and velocity loop information on a fixed, regular interval.
This interval is known as the cycle time. For Juno ICs the default as well as the minimum cycle time value is 102.4

uSeconds giving an update rate of approximately 10 kHz.

There are circumstances however where a slower loop rate is preferable. In particular, running at a lower loop rate may
improve motion smoothness if the motor velocity is estimated from a quadrature encoder or from Hall signals.
Ultimately the optimum cycle time is application specific and should be determined experimentally as part of the
control parameters tuning process. To set the cycle time the command SetSampleTime" is used. To read back the
current cycle time the command GetSampleTime is used.

In addition to setting the overall Juno cycle time, the Position/Outet loop, if used, may have its loop rate further

reduced by setting the Outer loop petiod. See Section 3.3.5, "Outer Loop Period," for more information.

*Throughout this user guide command nnemonics are provided to illustrate how Juno is controlled through commands. These nnemonics
are symbolic human-readable representations of the actual formatted command data packets that are sent during host communication or
loaded from the NV RAM during startup. For more information refer to Section 2.8, "Host Commands.”

Note that Juno’s current loop, commutation, microstep waveform generation, and motor output update rates are [
not affected by the user specified cycle time. For detailed information on these Juno functions refer to the l
MC781 |3 Electrical Specifications.

2.7 Motor Specific Versus Multi-Motor
Juno ICs

One of the Juno family’s more unique characteristics is that a user programmable motor type IC is available. Most Juno
ICs control a specific motor type, either Brushless DC, step motor, or DC Brush. The MC78113 IC however allows

the motor type to be programmed by the user and is known as the multi-motor version.

While motor-specific Junos are often used in applications where the motor type is known and fixed, in products where
different motor types may be used the multi-motor Juno can provide a number of advantages. These include reducing
the number of separate motor controller design projects, requiring just one IC type to be purchased, and reducing the

number of different board types needed in inventory.

As detailed in the MC78713 Electrical Specifications it is not difficult to create a multi-motor amplifier design on a single
board which supports all three motor types (or two of the three types).Whether or not a dedicated-motor Juno IC or
the multi-motor Juno IC is used is application specific and up to the user to determine.

2.7.1 Setting the Motor Type

If the multi-motor MC78113 IC is used the command SetMotorType must be sent to specify the motor type. Either
a DC Brush, Brushless DC, or step motor type is selected. The current motor type setting can be read using the
GetMotorType command. If one of the motor specific Juno ICs is used it is not necessary to set the motor type.

Setting the motor type tesults in virtually all of Juno's control parameters being reset, and therefore the
SetMotorType command should always be sent at the very beginning of the uset's initialization sequence. This is true

whether commands are sent via microprocessor host or via an initialization sequence stored in Juno’s NVRAM.
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Figure 2-18:
Sample Pro-
Motion Script
File
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2.8 Host Commands

Juno ICs provide more than 40 commands used for tailoring its control to a specific application. Depending on the
specific Juno IC used, a serial, SPI, or CANbus, host port may be used to send these commands. Alternatively the
NVRAM may be used to auto-load commands upon power-up. The format of the stored NVRAM commands closely

resembles the format of commands sent via one of the host ports.

Most host commands specify a single parameter but some specify two or even three. Parameters may be signed or
unsigned integers, may be bit encoded, or may be a fixed code specifying one of a list of available values. Throughout

this manual we will show the mnemonics associated with Juno host commands.

Below are examples of host command mnemonics showing the variable name, associated mnemonic code, and range
of settable values:

Host Command

Parameter Mnemonic Range & Description
PWM Switching Frequency 20 kHz Higher inductance motors should be set for 20 kHz.
40 kHz Lower inductance motors may use 40, 80, or 120 kHz
80 kHz to maximize current control accuracy and minimize
120 kHz heat generation. The default value for this parameter
is 20 kHz.
Encoder to step ratio SetEncoderToStepRatio Two specified values, each have a range | to 32,767.

The first parameter sets the number of encoder
counts per motor rotation, the second specifies the
number of microsteps per motor rotation

For a complete description of each command supported by Juno refer to the Juno Velocity & Torque Control IC

Programming Reference.

2.8.1 Command Script Files

#ScriptVersion 1

:DESC "Motor 2 settings"'
:CVER 1.3

SetDrivePWM 1 561
SetDrivePWM 2 0x80ff
SetDrivePWM 4 8
SetDrivePWM 5 2013
SetDrivePWM 6 2013
SetOutputMode 7
SetMotorCommand 0
SetSignalSense 0x0001
SetPhaseParameter 0 0
SetCurrentControlMode 1
SetFOC 512 680

ETC...

Juno ICs process host commands in their native ‘machine’ packet format consisting of a series of hexadecimal
numbers. When used to record commands that will be stored in NVRAM during initialization however, PMD Corp.’s
Windows-based Pro-Motion program can use a special text file format to store host commands. This file is known as
a script file and an example is shown in Figure 2-18. Script files are convenient because they are human readable and
editable.
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Script files are parsed via a specific syntax format. For more information refer to the Juno 1VVelocity & Torque Control IC
Programming Reference.

The primary purpose of script files and Juno's NVRAM power-up command execution scheme is to automatically [
load control parameters prior to starting motor control. Although Juno’s NVRAM initialization sequence allows l
some synchronization with external signals and some timing control, it does not provide general purpose language

controls such as looping or conditional code execution. If this type of control is desired than a microprocessor
commanding the Juno IC via one of the host communication ports should be used.

Most users will not directly edit the script files and will instead rely on Pro-Motion to create the script file and [
store configuration information. Pro-Motion has convenient features for exporting and importing the current Juno l
configuration to a script file, or loading or uploading previously stored data from the Juno IC’s NVRAM.

2.9 Juno ICs in the Production
Application

Each Juno IC, before undertaking velocity control, torque control, or step motor control, must be programmed with
parameter settings appropriate for the application that it will be used in. These control parameters include quantities
such as PWM (Pulse Width Modulation) frequency, current loop gains, safety thresholds, and more.

One option for loading these parameters and actively controlling the Juno IC during operation is via a microprocessor
host port. However another useful option is by using the NVRAM. Production related aspects of loading Juno’s
NVRAM with content is discussed in the next several sections.

2.9.1 Loading the NVRAM

There are two primary ways that NVRAM data can be programmed into the Juno IC in the user production
application. Which method is best depends on the Juno package type you are using (56-pin VQFN versus 64-pin
TQEFP), and the preferred method of PCB board production and setup.

2.9.1.1 NVRAM Programming via Juno DK IC Socket

The 64-pin TQFP package Juno DK includes an IC socket that can be used to program the NVRAM on 64-pin Juno
ICs prior to soldering into the user’s production PCB. Pro-Motion as well as a more compact programming executive

available from PMD Corp. supports script files to program the Juno IC NVRAM. For more information on PMD
Corp. script files refer to Section 2.8.1, "Command Script Files."

The 56-pin VQFN Juno DKs do not have a socket and therefore cannot be used to program the NVRAM of pro-
duction 56-pin VQFN Juno ICs.
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Figure 2-19:
NVRAM
Programming
Via 3-pin UART
Cable
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2.9.1.2 NVRAM Programming Via 3-pin UART Cable

An alternate NVRAM programming approach is to execute the NVRAM download by communicating to the Juno IC
after it is installed in the production PCB. This approach generally uses a 3-pin connector installed on the user’s
production board. A technician plugs into this connector and performs the NVRAM download. To be programmed

the Juno IC must receive power, so this generally means the PCB power is turned on during this procedure.

To facilitate this approach PMD Corp. provides a dedicated USB to 3-pin UART programming cable (PMD Corp. Part
# Cable-USB-3P) with each Juno DK. This programming cable plugs into the PC’s USB port on one end and into a
1x3 3-pin 2 mm header component on the other. A representative PCB mounted header component is Samtec
MTMM-103-04-x-S-150.

PMD
3-Pin Programming Cable
(P/N: Cable-USB-3P)

Juno IC
) SrIRcv—32
Windows PC SriXmt - 27
% \ Gnd 28
[ [ &)

— & -« 3Pin2mm

USB Port Header On

User's PCB

The table below shows the required wiring for the on-board connector if it is to be used with the PMD Corp.

programming cable:

Juno Pin # Juno Pin #
Connector (64-pin TQFP (56-pin VQFN
Pin # Pin Name Package) Package)
| SriXmt 27 24
2 SriRev 32 28
3 GND 28 (or other ground 25

signal)

2.9.2 Analog Signal Calibration in the Production
Application

After integration into a PCB, it is recommended that the external analog signal processing circuitry that inputs to the
Juno IC be calibrated. While some applications will not need these calibrations, for applications where the quietest,
smoothest, and most accurate motion is desired, calibration of the analog inputs is recommended. Depending on the
specific Juno IC used the signals that can be calibrated are AnalogCmd, CurrentA-CurrentD, and Tachometer. For more

information on these signals refer to Chapter 14, Hardware Signals.

When a microprocessor is on the user PCB, generally this microprocessor is used to send the host commands needed

to calibrate the analog inputs as part of the power up sequence.

Another approach is to calibrate during NVRAM-based initialization startup. This is done by embedding a command
sequence that executes the calibration during the NVRAM startup at each power cycle. This approach can only be
used when the startup condition of the PCB and connected motors is controllable. For example if the calibration

occurs when the motors are still spinning, the calibration will not give accurate results.
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A third approach that has the benefit of eliminating the need for calibration at each power cycle is to execute the
calibration on the assembled PCB using a 3-pin UART programming cable. The derived calibration offsets are stored
into NVRAM and recalled automatically thereafter by Juno at each power-up. For more information see

Section 2.9.1.2, "NVRAM Programming Via 3-pin UART Cable."

PMD Corp.’s Pro-Motion software program provides a convenient set up facility for selecting NVRAM startup

options. In addition, advanced users can directly edit Juno start up scripts using a text editor. Refer to Section 2.8.1

Al

"Command Script Files," for more information.
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Figute 3-1 provides a summary of the control flow of Juno’s position/outer loop control module. The position/outer
loop module, as the name suggests, is used for position control of the motor when the command source is a position
rather than a velocity or a torque. In addition, this module can be operated as the outer loop controller for systems that

control system characteristics such as pressure or temperature.

The Juno position/outer loop allows the user to specify one of several desired position or outer loop command sources
as well as the corresponding measured value source. The loop command and the corresponding measured value are then
subtracted to develop a loop error which is passed through a PID (proportional, integral, derivative) filter and output to
the next enabled downstream control module, usually either the velocity loop or the current loop.

3.1 Position Loop Operation

The most common use of Juno’s position/outer loop module as a position controller is when pulse & ditection is
selected as the command source. Incoming pulse & direction signals are counted and are stored in a 32 bit position
register. This raw count is then scaled by a user specified ratio of steps to encoder counts resulting in a 32-bit loop
command value.
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An alternative command source in this mode is the position register of the profile generator. This is a common Juno
operating mode for velocity control applications where the commanded axis moves very slowly, and where a discrete

position based technique for velocity control may work better than an explicit velocity loop technique.

Finally, the direct input SPI port can be selected as a command source. The SPI port specifies a velocity command
which is integrated to form a position command. Similar to the profile generator command source described above,

this command source may be useful when the commanded axis moves very slowly.

To select the position loop command source the SetDriveCommandMode command is used. To read this value back
the GetDriveCommandMode command is used. To read the current value of the pulse & direction position register
the GetCommandedPosition command is used. To read the profile generation position register the
GetCommandedPosition command is used.

There are two selectable position feedback sources; quadrature encoders and Hall sensors. Similar to the command
sources, the measured feedback position is kept as a 32-bit register. To set the feedback source the command
SetEncoderSource is used. To read this value back the GetEncoderSource command is used.

Although the velocity loop can be enabled when position control of the servo motor occurs (this is referred to as a
cascaded position-velocity controller), more common is that the position loop is used with the velocity loop disabled
and for the output of the position/outer loop module to directly command the current loop. For more information

on current loop functioning refer to Chapter 5, Current Iogp.

3.2 Outer Loop Operation

The term “outer loop” refers to the Juno capability to control measurable physical system characteristics when control

of that characteristic has a roughly proportional response to the Juno-controlled motor velocity.

The most common use of this capability is to control pressure or temperature within a chamber. A sensor measures
the pressure or temperature and the output of the outer loop is fed downstream to the velocity loop, which actively
controls the spin rate of the motor. This in turn, due to the mechanical relationship of the motor to the measured

pressure or temperature, increases or decreases the pressure or temperature.

Both positive and negative motor to measured characteristic relationships are supported. For example when
controlling pressure, an increase in motor velocity typically increases the pressure. However when controlling

temperature via a circulating cooling fluid, an increase in motor velocity decreases the temperature.

When the position/outer loop module is used for outer loop control the selectable command sources ate direct input
SPI, the AnalogCmd signal, and the profile generator velocity register. Both the direct input SPI command value and the
analog command input value hold a signed 16 bit quantity representing the command value. If the profile generator
is set as the source the value of the 32 bit velocity register will be used after being scaled by a user-specified velocity

scalar value.

As shown in Figure 3-1, if selected as the command source the AnalogCmd signal is passed through a biquad filter.
Although often left at its default filtering which consists of a low pass filter with a cutoff of 675 Hz, the biquad filter
may be useful for applications where more sophisticated loop filtering is desired. For more information on Juno’s

biquad filters and how to set them, refer to Section 4.5, "Biquad Filtering."

To select the command source the SetDriveCommandMode command is used. To read this value back the
GetDriveCommandMode command is used. To set and read back the velocity scalar the commands SetLoop and
GetLoop are used. To read the current value of the ditect input SPI register the command GetLoopValue is used.
To read the current value of the AnalogCmd signal the command GetLoopValue is used. To read the current value of
the velocity register the command GetCommandedVelocity is used.

There are two selectable feedback sources in this mode; the Tachometer analog input signal (providing the measured
pressure or flow rate rather than the motor spin rate) and direct input SPI. To set the feedback source the SetLoop
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command is used. To read this value back the GetLoop command is used. To read the 16-bit current value of the
Tachometer signal the command GetLoopValue is used.

3.3 Settable Parameters

To control the position/outer loop up to ten parameters are set by the user; Kp, Ki, Kd, Ilimit, Dtime, Kvel, Kout,

Outposlimit, Outneglimit, and Pouter. Three of these are gain factors for the PID (proportional, integral, detivative)
controller, one is a limit for the integral contribution, one is the derivative sampling time, one is a scale factor that is
applied only when the command source is set to profile generator, one is an output scale factor that is always applied,

two ate signed limits to the loop output value, and one is the cycle time petiod for the position/outet loop.

Term Name Default Value Representation & Range

Kp Proportional gain 0 Unsigned |6 bits (0 to 32,767)

Ki Integral gain 0 Unsigned |6 bits (0 to 32,767)

Kd Derivative gain 0 Unsigned 16 bits (0 to 32,767)

llimit Integral limit 0 Unsigned 32 bits (0 to 2,147,483,647)
Dtime Derivative time I Unsigned 16 bits (0 to 32,767 cycle times)
Kvel Velocity scalar 65,536 Unsigned 32 bits (I to 2,147,483,647)
Kout Output scalar 32,767 Signed 16 bits (-32,768 to +32,767)
Outposlimit Positive output limit ~ 2,147,483,647 Unsigned 32 bits (0 to 2,147,483,647)
Outneglimit Negative output limit ~ -2,147,483,648 Signed 32 bits (-2,147,483,648 to 0)
Pouter Outer loop period I Unsigned 16 bits (I to 32,767 cycle times)

All of the above parameters are set with the SetLoop command and read with the GetLoop command.

Determining correct parameters for the Kp, Ki, Kd, and Ilimit gains can be done in a number of ways. The easiest is
to utilize the auto-tuning facility provided within PMD’s Pro-Motion software package. Parameters derived using this
procedure may or may not be optimized for your system but will be adequate for most applications and a good starting

point.

Please note that it is the responsibility of the user to determine the suitability of all control parameter values,
including those determined by auto-tuning, for use in a given application.

In addition to these settable parameters there are settable parameters associated with the biquad filter, should it be
changed from its default values. Refer to Section 4.5, "Biquad Filtering" for more information.

3.3.1 Derivative Time

Normally, the derivative time of the position or outer loop PID controller, called Dtime, is set so that the derivative
contribution is recalculated at every servo cycle. Under some circumstances however it may be desirable to set the
derivative sampling rate lower than this to reduce noise in the estimated derivative and to improve system stability or

simplify tuning,

The specified value is the desired number of servo cycles per Juno cycle time. For example, if Juno’s cycle time (set
using the SetSampleTime command) has been set to 204.8 pSec, a value of 10 programmed in the derivative time
register will result in a derivative sample time of 204.8 uSec * 10 = 2.048 mSec.

Changing the derivative sample time has no effect on the overall cycle time set using the command SetSampleTime.
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The default value for the derivative time is 1, meaning that by default the derivative term is calculated at each servo

cycle.

3.3.2 Velocity Scalar

The Juno velocity scalar register, called Kvel, is used by several control modules including the position/outer loop
module and the velocity loop module. When used in conjunction with the outer loop control function it is used to

scale the profile generator’s 32-bit velocity register to generate the outer loop command.

Kvel is an unsigned 32 bit number with 1/65,536 scaling meaning that a scale factor of 1.0 (unity scaling) is expressed
with a value of 65,5306.

Example

In a pressure control application the current pressure of the chamber is 1,000 mbar. A smooth linear ramp of
commanded pressure from 1,000 mbar to 1,250 mbar in 300 mSecs is desired. With unity scaling of the velocity scalar
what are the profile generator target velocity and target acceleration values to achieve this profile ramp of the pressure

command?

Based on the pressure sensor feedback scaling for this application a command value of -32,767 corresponds to a

pressure of 500 mbat, a value of O corresponds to a pressutre of 1,000 mbar, and a value of +32,767 to a pressure of
1,500 mbar. Therefore a target pressute P of 1,250 mbat equals a command value of V = (P - 1,000) * 32,767 / 500
= 16,384. With the default unity scaling of the velocity scalar (65,536) this results in a target velocity command of the

same value, 16,384 counts/cycle time. Because the scaling of the target velocity value is counts/cycle/ 216 this gives a

velocity value to program of 1,073,741,824.

A ramp time of 300 mSecs with the cycle time at the default value of 102.4 pSecs is a time duration of 300 mSecs /

102.4 pSecs/cycle = 2,939 cycles. The target acceleration value is therefore 16,384 counts/cycle / 2,939 cycles = 5.575
counts/ cyclez. Because the scaling of the target acceleration value is counts/ cycle2 / 22 4, after multiplying by 224 this

gives an acceleration value to program of 93,527,698.

For more information on the scaling used in this application example refer to Section 14.1.3, " AnalogCmd Signal With
Position/Outer Loop."

The velocity scalar is only used with the position/outer loop control module when an outer loop control function
is being performed. When executing as a position loop controller the velocity scalar is not used.

3.3.3 Output Scalar

The position/outet loop provides a general purpose loop output scalat, called Kout, to optimize the effective dynamic
range of the control loop. This scalar is most commonly used to increase (or decrease) the sensitivity of the servo gain
values Kp, Ki, and Kd. For example if a particular application has a Kp setting of 5, reducing Kout by a factor of ten
will result in a Kp setting of 50 having an equivalent effective gain.

Kout is a signed 16 bit number with 1/32,768 scaling, meaning that a scale factor of 1.0 (unity scaling) is expressed
with a value of 32,767. Note that the Kout used in the position/outer loop is a different vatiable, and has a different

scaling, then the Kout used with the velocity loop. See Section 4.3, "Settable Parameters" for information on velocity

loop module settable variables.

The output value of the position/outer loop is a signed 32 bit quantity with a numerical range of -2,147,483,648 to
+2,147,483,647. When the output of the outer/position loop is input to the downstream velocity loop the full 32 bit
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output value is utilized. If, however, the position/outer loop output is input to the current loop the output value is

divided by 65,536.

3.3.4 Output Limits

The position/outer loop provides programmable polatity-specific output limits, called Outposlimit and Outneglimit.
The positive output limit is applied when the loop output value is positive and limits the loop output value to the
specified positive output value. Similarly, the negative limit is applied when the output command is negative. Output
limiting is a useful safety feature for insuring that the physical or electrical limitations of the actual system are not

exceeded by the velocity or torque command sent to the downstream modules.

For both the positive and negative limits zero is an allowed limit value, meaning the uset can force the position/outer
loop to operate with only one polarity. This may occur in particular with outer loop control functions. For example a
circulating pump being used to control temperature may only be able to move in a forward velocity direction. This can

be accommodated via a negative output limit of zero.

Both the positive and negative specified output limits are 32 bit numbers. The positive limit range is 0 to 2,147,483,647
while the negative limit range is -2,147,483,648 to 0. The default values are 2,147,483,647 and -2,147,483,648
respectively meaning no output limiting,

3.3.5 Outer Loop Period

The position/outer loop control module allows its loop rate to be separately specified by the user via a parameter
known as the outer loop period or Pouter. This outer loop period also sets the update rate of the profile generator

should it be specified as the position/outer loop command source.

The most common use of this feature is when the loop is operating as an outer loop controller. Many pressure sensors
or other physical sensors provide updates at relatively low rates compared to the Juno cycle time. The value
programmed into the outer loop period register represents the number of Juno cycle times that will comprise each

position/outer loop cycle.

For example if the Juno cycle time is at the default value of 102.4 pSeconds, a value of 2,000 programmed into the
outet loop period register will result in the position/outer loop operating with a cycle time of 102.4 pSec x 2,000 equals
20.48 mSecs (48.8 Hz).

For more information on the master Juno cycle time refer to Section 2.6, "Juno Cycle Time & I.oop Rates."
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Figure 3-2:
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3.4 Position/Outer Loop Calculations
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The calculation flow for the position loop function and the outer loop function are somewhat different. The exact

scaling and control flow for these loops are provided in Figure 3-2 and Figure 3-3.
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3.6 Motion Error Detection

Under certain circumstances the actual motor position may differ from the commanded position by an excessive
amount. Such an excessive position error can indicate a dangerous condition such as motor or encoder failure or

excessive mechanical friction.
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Juno provides a facility to automatically detect such a condition. A programmable error limit is specified by the user
and if the actual error exceeds this programmed threshold a motion error occurs resulting in the corresponding flag
within the Event Status register being set. For more information on this register see Section 8.2.1, "Event Status

Register."

To set the motion error limit the SetLoop command is used, and to retrieve this programmed limit the GetLoop

command is used.

The motion error feature operates in the same way whether the loop is being used to control position or an outer loop
quantity such as pressure. In each case the programmed limit is numerically compared against the calculated loop error

and if exceeded a motion error occuts.

Juno can be programmed to take various actions when a motion error occurs such as bringing the motor to a smooth
stop, an abrupt stop, or entirely disabling motor output. The mechanism to program and process these functions is
called event handling and is described in detail in Section 8.3, "Fvent Action Processing,"

3.6 Watchdog Timer

Juno provides a facility for detecting when external commands which arrive on a regular basis unexpectedly stop. The

ability to detect this condition, known as a watchdog timer, is useful for safely shutting down an axis.

The watchdog feature functions with the profile generator and the SPI direct input command sources. It does not

function when AnalogCmd or pulse & direction are selected as the command source.

In each case the user selects a watchdog countdown time via the SetDriveFaultParameter command in units of
cycles. This value can be read back via the GetDriveFaultParameter command. The default value for the watchdog
countdown timer is 0 which indicates no watchdog function is active.

If alack of command activity occurs for more than the watchdog countdown period a watchdog error occurs, resulting

in the drive exception flag of the Event Status register being set. For more information see Section 8.2.1, "Event Status
Register."

Juno can be programmed to take various actions when a watchdog timeout occurs such as bringing the motor to a

smooth stop, an abrupt stop, or entirely disabling the motor output. The mechanism to program and process these

functions is called event handling and described in detail in Section 8.3, "Event Action Processing."

3.7 Position/Outer Loop Operation
Startup

Initializing a cascaded outer loop/velocity loop control function such as that shown in Figure 2-17 requires special
attention to the startup procedure. In general it is recommended that the velocity loop be enabled and used to stably

opetate the system before enabling the position/outer loop.

In addition, if the AnalogCmd or SPI direct input command sources are used, at the time the position/outer loop is
enabled the user should insure that the command word closely matches the measured outer loop value so that there

is no discontinuity.

If the profile generator is selected as the command source, at the time the position/outet loop is enabled the profile
generatot's target and commanded velocity will automatically be set to the measured outer loop value. In this way there

should be no discontinuity of command at the time the position/outer loop is enabled.

To enable or disable Juno control modules the SetOperatingMode command is used.
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3.8 Enabling and Disabling the Position/
Outer Loop Module

If disabled, no calculations occur in this module and no output value is available to downstream control loop modules.

In addition, any accumulating registers such as the PID integral sum will be set to zero.

If enabled, the user specified command sources and feedback sources will be applied to this module and will no longer
apply to downstream enabled modules. In addition, calculations will immediately begin and the calculated loop output
value will be used by the next enabled downstream module. At the time this module is enabled the integral sum is
initialized so that the loop output does not change abruptly.

To disable the position/outer loop module the command SetOperatingMode is used. The value set using this
command can be read using GetOperatingMode.

A previously disabled position/outet loop module may be re-enabled in 2 number of ways. If output was disabled using
the SetOperatingMode command, then another SetOperatingMode command may be issued. If disabled as part

of an automatic safety event-related action (see Section 8.3, "Event Action Processing" for more information), then

the command RestoreOperatingMode is used.

The default condition of the position/outer loop module is disabled, therefore if use of this module is desired the
external controller must send a SetOperatingMode command to enable the module.
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Figure 4-1 provides a summary of the control flow of Juno’s velocity loop control module. This module provides a

programmable velocity loop function supporting a wide range of applications.

The velocity loop module is used whenever a high performance velocity control function is desired. Although most
often this module is programmed to directly input commands from external circuitry, it is also possible for the velocity

command to come from the profile generator ot from the upstream position/outer loop module.

This loop module utilizes the desired velocity command and a measured velocity to develop a loop error value which is
passed through a PI (proportional, integral) filter and output to the next enabled downstream control module, usually
the current loop module.

The velocity loop also provides sophisticated filtering capability in the form of bi-quad filters located in the velocity
feedback path and in the analog command input path, as well as a deadband filter at the velocity command output. These

filters can be used to smooth velocity and improve stability in the motion system being controlled.

4.1 Selecting the Command Source

The velocity loop allows several command sources to be selected. Most common are either the direct input SPI port or

the AnalogCmd signal. Both the ditect input SPI command and the analog command input value are signed 16 bit
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quantities representing the commanded velocity. Alternatively, the profile generator can be selected as the velocity
command source. In this case the profile generator’s 32 bit velocity register value will be used after being scaled by a
user-specified velocity scalar value. Finally, if the position/outer loop control module is enabled the output of that
module will be the command source for the velocity loop module.

To select the command source the SetDriveCommandMode command is used. To read this value back the
GetDriveCommandMode command is used. To read the current value of the direct input SPI register the command
GetLoopValue is used. To read the current value of the AnalogCmd signal register the command GetLoopValue is
used. To read the current value of the velocity register the command GetCommandedVelocity is used.

4.2 Selecting the Feedback Source

The velocity loop supports three selectable feedback sources; quadrature encoder feedback, Hall sensors, and the
Tachometer analog input signal. Both the quadrature and Hall inputs create a velocity by successive subtraction. That

is, the velocity is calculated from the difference between the current position and the previous position.

To select the feedback source to encoder or Hall sensors the SetEncoderSource command is used. To select the
Tachometer signal the SetLoop command is used. To read these values back the GetEncoderSource or GetLoop
commands are used. To read the 16-bit value of the Tachometer input signal register the command GetLoopValue is
used. To read the 32-bit value of the feedback position (whether Halls or quadrature encoder are selected as the source)
the GetActualPosition command is used.

4.3 Settable Parameters

To control the velocity loop up to seven parameters are set by the user; Kp, Ki, Ilimit, Kvel, Kout, DBlow, and DBhigh.
Two of these are gain factors for the PI (proportional, integral) controller, one is a limit for the integral contribution,
one is a scale factor that is applied only when the command source is set to profile generator or when the feedback
source is quadrature encoder or Halls, one is an output scale factor that is always applied, and two are the lower and
upper deadband filter limits.

Term Name Default Value Representation & Range
Kp Proportional gain 0 Unsigned |6 bits (0 to 32,767)

Ki Integral gain 0 Unsigned |6 bits (0 to 32,767)

llimit Integration limit 0 Unsigned |6 bits (0 to 32,767)

Kvel Velocity scalar 65,536 Unsigned 32 bits (0 to 2,147,483,647)
Kout Output scalar 256 Signed 16 bits (-32,768 to +32,767)
DBlow Deadband lower limit 0 unsigned 32 bits (0 to 2,147,483,647)
DBhigh Deadband upper limit 0 unsigned 32 bits (0 to 2,147,483,647)

All of these parameters are set with the SetLoop command and read back with the GetLoop command.

Determining correct parameters for the Kp, Ki, and Ilimit gains can be done in a number of ways. The easiest is to
utilize the auto-tuning facility provided within PMD’s Pro-Motion software package. Parameters derived using this
procedure may or may not be optimized for your system but will be adequate for most applications and a good starting
point.

Please note that it is the responsibility of the user to determine the suitability of all control parameter values,
including those determined by auto-tuning, for use in a given application.
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In addition to these settable parameters there are settable parameters associated with the biquad filter, should it be
used. Refer to Section 4.5, "Biquad Filtering" for more information.

4.3.1 Velocity Scalar

The velocity scalar register, called Kvel, is used by several Juno control modules including the velocity loop module.
Kvel is an unsigned 32 bit number with 1/65,536 scaling meaning that a scale factor of 1.0 (unity scaling) is expressed
with a value of 65,536.

When used with the velocity loop Kvel is most commonly used to scale the encoder or Hall sensor feedback when
functioning as the source of the actual velocity measurement and when the AnalogCmd signal or the direct-input SPI
port is used for the velocity command. The following example illustrates this.

Example

An application will utilize the AnalogCmd signal to command a velocity controller as detailed in the example in

Section 7.1, "Settable Parameters." In this application the maximum commandable velocity is 13.825 encoder counts/

cycle (where cycle is a Juno cycle time of 102.4 pSecs). To provide a minimum recommended scaling overhead of
~30% we will scale the AnalogCmd so that the maximum negative and positive voltages command velocities of

-20.0 counts/cycle and +20.0 counts/cycle respectively.

From Figure 4-3 the AnalogCmd value is scaled up by a factor of 32,768. The velocity scalar required to implement the
desired scaling is therefore Kvel = 32,767 * 32,768 / 20.0 = 53,685,452. This value of the velocity scalar will result in
a velocity command range of +/- 20.0 counts/cycle at the AnalogCmd signal.

Note that if in this application Juno’s default Kvel value of 65,536 had been used the maximum commandable range
of velocity would be V = +/- 32,767 * 32,768 / 65,536 = +/- 16,384 counts/cycle. Since the actual application range
is only +/- 20 counts/cycle this means that only one tenth of 1% of the analog signal input range would be utilized
to control the desired range of velocity. This example illustrates the importance of correctly setting the velocity scalar
for applications which use the AnalogCmd or SPI direct input ports in combination with the encoder or Hall sensors

for velocity feedback.

4.3.2 Output Scalar

The velocity loop provides a general purpose loop output scalar, called Kout, to optimize the effective dynamic range
of the control loop. Kout should be set so that the maximum expected output value is 50% - 75% of the encodable

numerical range.

Kout is a signed 16 bit number with 1/256 scaling, meaning that a scale factor of 1.0 (unity scaling) is expressed with
a value of 256. Note that the Kout used in the velocity loop is a different variable, and has a different scaling, then the
Kout used with the position/outer loop.
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Juno ICs provide a deadband filter associated with the velocity loop that may be useful for reducing hunting when the
command velocity is around zero. The deadband filter may be used with any of the velocity loop command sources
but is most commonly used when the velocity loop is commanded by the Juno outer loop, or by an outer loop

implemented in an external processot, using analog or SPI direct command.

Two parameters are provided to control the deadband filter, the deadband lower limit, denoted as DB, and the
deadband upper limit, denoted as DBy,;,1,. Each of this parameters are unsigned 32-bit quantities with a range of 0 to
2,147,483,647.

At each calcuatlion cycle the deadband filter uses both the commanded velocity (the input to the filter) and the
deadband filter output to determine a new deadband filter output value. This is determined as follows:

If the previous deadband filter output value was zero than the absolute value of the commanded velocity is compared
to the deadband upper limit. If the limit is exceeded the commanded velocity is used as the new deadband filter output.

If the limit is not exceeded a value of zero is used as the new deadband filter output.

If the previous deadband filter output value was non-zero than the absolute value of the commanded velocity is
compared to the deadband lower limit. If the limit is exceeded the commanded velocity is used as the new deadband

filter output. If the limit is not exceeded a value of zero is used as the new deadband filter output.

Use of two deadband limits, an upper limit and a lower limit allows a hysteresis function to be supported. The lower
limit may be equal to the upper limit but may never exceed it. A value of zero in both the upper and lower limits
effectively turns off the deadband filter, which is Juno's default condition.

Figure 4-2 shows the form of the deadband filter for a commanded velocity that traverses lineatly from a large negative
command value, through a zero value, to a large positive value. This graph shows the relationship between the
deadband output value as the commanded velocity value approaches and continues past zero. For a commanded value
that traverses from a positive to a negative commanded value (effectively reversing the direction of the arrows shown)
the form is similar in shape but shifted down and to the left by the difference between upper limit and lower limit value.
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4.4 Velocity Loop Calculations
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The exact scaling and control flow for the Juno velocity loop is provided in Figure 4-3.

4.5 Biquad Filtering

As shown in Figure 4-3 a bi-quad filter is included in the feedback pathway of the Juno velocity loop as well as at the
AnalogCmd signal command source input. For applications that may require it, bi-quads provide a sophisticated tool for
smoothing the functioning of the system, reducing vibration, and reducing resonances in the system being controlled.

Bi-quads can be programmed to create different filtering functions including lead/lag, band pass, low pass, notch, and
other filter types. A typical system development process involves making an open loop frequency scan of the system

to be controlled to learn about dead spots and resonances in its frequency response. From this information the biquad

filter can be programmed such that these system non-linearities are reduced or eliminated.

4.5.1 Settable Parameters

There are two bi-quad filters labelled biquadl and biquad2. Biquad1 is located in the motor feedback path, while
biquad?2 is located at the AnalogCmd input signal. The following table lists the parameters that are set to control the

operation of either of the two biquad filters.

Term Default Value Representation & Range

Coefficient A 1,533,916,891 signed 32 bits (-2,147,483,648 to +2,147,483,647)
Coefficient A, -547,827,461 signed 32 bits (-2,147,483,648 to +2,147,483,647)
Coefficient By +87,652,394 signed 32 bits (-2,147,483,648 to +2,147,483,647)
Coefficient B 0 signed 32 bits (-2,147,483,648 to +2,147,483,647)
Coefficient B, 0 signed 32 bits (-2,147,483,648 to +2,147,483,647)
Biquad| Enable Enabled Single bit field with value of enabled or disabled.
Biquad2 Enable Disabled Single bit field with value of enabled or disabled.
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To set any of these parameters the command SetLoop is used. To read back these parameters, the command GetLoop
is used.

The default values for both biquad1 and biquad2 provide a critically damped low pass filter with a cutoff at a frequency
of approximately 675 Hz.

For more information on setting the Juno velocity loop biquad filters to achieve specific filtering functions please refer
to the Juno Velocity & Torque Control IC Programming Reference.

Before changing biquad filters, the entire biquad should be disabled. This is accomplished using the SetLoop com-
mand. Once the entire set of new biquad parameters have been loaded in, the biquad can then be safely re-en-
coded using the SetLoop command.

4.5.2 Biquad Filter Calculations

Input Output

The exact scaling and control flow for the two Juno biquad filters is shown in Figure 4-4.

4.6 Motion Error Detection

Under certain circumstances the actual motor velocity may differ from the commanded velocity by an excessive
amount. Such an excessive velocity error often indicates a potentially dangerous condition such as motor or encoder
failure, excessive load, or high mechanical friction.

Juno ICs provide a facility to automatically detect such a condition. A programmable error limit is specified by the user
and if the actual velocity error limit exceeds this programmed threshold a motion error occurs, resulting in the

corresponding flag within the event status register being set. For more information see Section 8.2.1, "Event Status
Register."

To set the motion error limit the SetLoop command is used, and to retrieve this programmed limit the GetLoop
command is used.
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Juno can be programmed to take various actions when a motion error occurs such as bringing the motor to a smooth
stop, an abrupt stop, or entirely disabling the motor output. The mechanism to program and process these functions
is called event handling and described in detail in Section 8.3, "Event Action Processing,".

If both the velocity loop and the position/outer loop control modules are active the motion error checking func-
tion will occur within the position/outer loop, and no velocity error checking will occur.

4.7 Watchdog Timer

Juno provides a facility for detecting when external commands which arrive on a regular basis unexpectedly stop. The

ability to detect this condition, known as a watchdog timer, is useful for safely shutting down an axis.

For a detailed description of this feature see Section 3.6, "Watchdog Timer."

4.8 Enabling and Disabling the Velocity
Loop

If disabled, the output from the position/outer loop module, if enabled, will pass ditectly to the curtent loop module

with no velocity control being performed.

If enabled, the user specified command sources and feedback sources will be applied to this module and will no longer
apply to downstream enabled modules. In addition, calculations will immediately begin and the calculated loop output

value will be used by the next enabled downstream module.

To disable the velocity loop module the command SetOperatingMode is used. The value set using this command
can be read using GetOperatingMode.

A previously disabled velocity loop module may be re-enabled in a number of ways. If output was disabled using the
SetOperatingMode command, then another SetOperatingMode command may be issued. If disabled as part of an

automatic safety event-related action (see Section 8.3, "Event Action Processing" for more information), then the

command RestoreOperatingMode is used.

The default condition of the velocity loop module is disabled, therefore to enable the velocity loop, the external
controller must send a SetOperatingMode command enabling the module.

To read the instantaneous actual state of the operating mode, the command GetActiveOperatingMode is used.
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Figure 5-1 provides a summary of the control flow of Juno’s current loop control module. Current control is a technique
used for DC Brush, Brushless DC, and step motors for controlling the current (and therefore the torque) through each
winding of the motor. By controlling the current, response times improve, motor efficiency is higher, and motion

smoothness increases.

The Juno digital current loop utilizes the desired current for each motor winding along with the actual measured current
which is input by direct analog signal input into the Juno IC. The desired current and measured current are then

subtracted to develop a current error, which is passed through a PI (proportional, integral) filter to generate an output
voltage command for each motor coil. The output command for each coil is then passed to the motor output module
which generates the precise PWM (pulse width modulation) timing output signals to control external switching circuitry.

For DC Brush motors, which are single phase devices, the current loop does not require information about the motor’s
rotor angle. For Brushless DC and step motors however the motor’s rotor angle is required. For information about

Brushless DC commutation see Chapter 9, Brushless DC Motor Control. For information about step motot microstepping

waveform generation see Chapter 10, Step Motor Control.

5.1 Selecting the Command Source

The current loop allows several command soutces to be selected. If either the velocity loop ot the position/outer loop

is enabled the output of those modules will be the command source for the current loop module.

If no upstream modules are enabled either the direct input SPI port or the AnalogCmd signal can be used to specify a
command from external circuitry. Both the direct input SPI command and the analog command input value are signed

16 bit quantities representing the commanded current (torque) value.
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Alternatively, the profile generator can be selected as the current loop command source. This may be useful if a ramped
current command is desired. The profile generator’s 32 bit velocity register value will be used after being scaled by a

user-specified velocity scalar value.

Finally, the current loop supports an additional command source consisting of a signed 16-bit register set via the
SetMotorCommand command. This direct set user command is sometimes useful for testing or calibration during
system setup. To select this register as the command source the SetOperatingMode command is used.

To select the command source the SetDriveCommandMode command is used. To read this value back the
GetDriveCommandMode command is used. To read the current value of the direct input SPI register the command
GetLoopValue is used. To read the current value of the AnalogCmd signal register the command GetLoopValue is
used. To read the current value of the velocity register the command GetCommandedVelocity is used. To read the
value of the SetMotorCommand the GetMotorCommand is used.

5.2 Settable Parameters

To control the current loop up to four parameters are specified by the user; Kp, Ki, Ilimit, and Currentlimit. Two of
these are gain factors for the PI (proportional, integral) controller, one is a limit for the integral contribution, and one

is a limit to the incoming current command. These four parameters have the following ranges and formats:

Term Name Default Value Representation & Range
Kpeurrent Current loop proportional gain 0 Unsigned 16 bits (0 to 32,767)
Kicurrent Current loop integrational gain 0 Unsigned 16 bits (0 to 32,767)
llimit , rent Current loop integration limit 0 Unsigned 16 bits (0 to 32,767)
Currentlimit Current limit 32,767 Unsigned 16 bits (0 to 32,767)

To set the gain parameter and the integration limit the command SetFOC is used. To read back these parameters the
command GetFOC is used. To set the current limit the command SetCurrentLimit is used and GetCurrentLimit
is used to read this value back. Note that for Brushless DC and step motors the gain values for the phase A and B

loops can be set independently while for single-phase DC brush motors only the phase A loop parameters are used.

Determining correct Kp, Ki, and Ilimit parameters for the current loop controller gains can be done in a number of
ways. The easiest is to utilize the auto-tuning facility provided within PMD’s Pro-Motion software package. Parameters
derived using this procedure may or may not be optimized for your system but will be adequate for most applications
and a good starting point.

Please note that it is the responsibility of the user to determine the suitability of all control parameter values,
including those determined by auto-tuning, for use in a given application.

5.2.1 Current Limit

Juno provides a settable limit to the magnitude of the commanded current via the register called Currentlimit. The
current limit functions by capping the magnitude of the commanded current to the specified value. For example if the
specified current limit is 10,000 an incoming command of +12,345 would be set to +10,000 and an incoming
command of -12,345 would be set to -10,000.

Limiting the commanded current is a useful safety feature for insuring that the physical or electrical limitations of the

actual system are not exceeded.
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Current limit is an unsigned 16 bit number with a range 0 - to 32,767. The default value is 32,767 meaning no limiting
is applied.

The current limit only limits the commanded current. Whether or not the motor current is actually limited to this
threshold is a function of whether or not the current loop is functioning properly.

5.3 Current Loop Operation

For DC Brush and step motors the current loop method is fixed and does not need to be set to be used. For Brushless
DC motors users may specify one of two current control methods. The large majority of applications will use field
oriented control (FOC) for Brushless DC motor control. FOC usually provides the highest top speeds and more

energy efficient operation of the motor.

Third leg floating is an option that may be considered with Hall-commutated Brushless DC motors. In that
configuration third leg floating can sometimes provide a higher top speed than FOC. Compared to FOC, third leg
floating drives only two of three legs at any instant with the third, non-driven leg, floating,

For Brushless DC motors to select which type of control method will be used, use the command
SetCurrentControlMode. To read the value set using this command, use GetCurrentControlMode. When third
leg floating current control is selected the commutation mode set via the command GetCommutationMode must
be set to Hall-based. For FOC current control the commutation mode can be set to either Hall-based or encoder-
based. For more information on Brushless DC motor commutation see Chapter 9, Brushless DC Motor Control

5.4 Watchdog Timer

Juno provides a facility for detecting when external commands which arrive on a regular basis unexpectedly stop. The

ability to detect this condition, known as a watchdog timer, is useful for safely shutting down an axis.

For a detailed description of this feature see Section 3.6, "Watchdog Timer."

5.5 Enabling and Disabling the Current
Loop Module

If disabled, output will pass directly to the power stage module with no current control being performed. The most
common use of this is to run the amplifier in voltage mode, which may be useful under some conditions for calibration

or testing,

If enabled, the user specified command sources and feedback sources will be applied to this module and will no longer
apply to downstream enabled modules. In addition, calculations will immediately begin and the calculated loop output

value will be used by the motor output module.

To disable the current loop module the command SetOperatingMode is used. The value set using this command can
be read using GetOperatingMode.

A previously disabled current loop module may be re-enabled in a number of ways. If output was disabled using the
SetOperatingMode command, then another SetOperatingMode command may be issued. If disabled as part of an
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automatic safety event-related action (see Section 8.3, "Event Action Processing" for more information), then the
command RestoreOperatingMode is used.

l The default condition of the current loop module is disabled, therefore to begin motor operations, the external
controller must send a SetOperatingMode command enabling the current loop module.

To read the instantaneous actual state of the operating mode, the command GetActiveOperatingMode is used.
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The purpose of the motor output module is to generate PWM (Pulse Width Modulation) and other Juno output signals

for use by external switching amplifier circuitry.

Juno ICs provide two different motor output methods, known as PWM High/Low, and Sign/Magnitude PWM. The
switching control mode that is used when Juno’s current control facility is utilized is PWM High/Low mode. Sign/
Magnitude PWM is typically used with single-IC amplifiers and bridges that themselves perform current control, or that
directly input sign and PWM magnitude control signals.

For a detailed description of the signals associated with these functions refer to the MC78713 Electrical Specifications.

6.1 Selecting the Command Source

The Motor Output Module allows several command sources to be selected. Most common by far is that one of the
'upstream' control loops is enabled in which case these modules provide the motor output command. These upstream

loops are the position/outer loop, the velocity loop, and the curtent loop.

If no upstream modules are enabled Juno operates in voltage mode (no current loop active) and either the direct input
SPI port or the AnalogCmd signal can be used to specify a voltage command via external circuitry. Both the direct input
SPI command and the analog command input value are signed 16 bit quantities representing the desired voltage.

Alternatively, the profile generator can be selected as the motor output command source. This may be useful if a ramped
voltage is desired. The profile generatot’s 32 bit velocity register value will be used after being scaled by a user-specified

velocity scalar value.
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Finally, the motor output module supports an additional command source consisting of a signed 16-bit register set via
the SetMotorCommand command. This direct set user command is sometimes useful for testing or calibration

during system setup. To select this register as the command source the SetOperatingMode command is used.

To select the command source the SetDriveCommandMode command is used. To read this value back the
GetDriveCommandMode command is used. To read the current value of the direct input SPI register the command
GetLoopValue is used. To read the current value of the AnalogCmd signal register the command GetLoopValue is
used. To read the current value of the velocity register the command GetCommandedVelocity used. To read the
value of the SetMotorCommand the GetMotorCommand is used.

6.2 PWM High/Low Motor Output
Mode

Juno ICs can control high-efficiency MOSFET or IGBT power stages with individual high/low switch input control.
A different configuration is used for each motor type:

*  DC Brush motors are driven in an H-Bridge configuration consisting of 4 switches.
* Brushless DC motors are driven in a triple half-bridge configuration consisting of 6 switches.
*  Step motors are driven in a two H-Bridge configuration consisting of 8 switches.

In PWM High/Low mode each signal carries a variable duty cycle PWM signal. A zero desired mototr command results
in the high side and low side being active for the same amount of time. Positive motor commands are encoded as a
high-side duty cycle greater than 50%, and negative motor commands are encoded as a duty cycle less than 50%. This

is shown in Figure 6-2.

0/1024
(100% negative
command)

1/1024
(large negative
command) 0

s [T TTUTTUTI

1024 /1024
(100% positive
command)

— 1
— 1
— 1
— 1
— 1
— 1
— 1
— 1
— 1

In PWM High/Low mode two output pins are used per motor terminal, allowing separate high-side/low-side control
of each bridge switch. In this scheme the high side output and the low side output are never active at the same time,
and there is generally a period of time when neither output is active. This period of time is called the dead time, and
provides a shoot through protection function for MOSFET or IGBT switches.

In addition to dead time, some high side switch drive circuitry requires a minimum amount of off time to allow the
charge pump circuitry to refresh. This parameter specifies this refresh time and has units of nSecs. The related
parameter of refresh time period, which is the time interval between these off time refreshes has units of current loop

cycles.
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It is also possible to control the maximum allowed PWM duty cycle. This may be useful to limit the effective voltage
presented to the motor windings, or to provide some other needed off-time for the switching amplifier circuitry. This
PWM Limit parameter along with all of these PWM control parameters is set using the SetDrivePWM command.

6.2.1 Settable Parameters

The following table shows the settable control parameters when PWM High/Low motor output mode is used:

Parameter Range & Units Description

PWM Switching Frequency 20 kHz Higher inductance motors should be set for 20 kHz. Lower
40 kHz inductance motors may use 40, 80, or 120 kHz to maximize
80 kHz current control accuracy and minimize heat generation. The
120 kHz default value for this parameter is 20 kHz.

PWM Dead Time 0-32,767 nSec The correct setting of this parameter depends on the spe-

cific switching circuitry used. See the manufacturer’s data
sheet for more information. The default value for this
parameter is 16,879 nSec.

PWM Refresh Time 0-32,767 nSec Some high-side switch drive circuitry requires a minimum
amount of off time, applied at a programmable period inter-
val, to allow the charge pump circuitry to refresh. The
default value for this parameter is 32,767 nSec.

PWM Refresh Period 1-32,767 cycles Some high-side switch drive circuitry requires a minimum
amount of off time, applied at a programmable period inter-
val, to allow the charge pump circuitry to refresh. The
default value for this parameter is | cycle.

PWM Limit 0-16,384 % output/163.84 This parameter allows the maximum PWM duty cycle to be
set. The default value for this parameter is 16,384 which
corresponds to 100% output.

PWM Signal Sense 1 6-bit mask This parameter allows the signal sense of the PWM output
signals to be specified. A | in the bit mask indicates active
high, a 0 indicates active low. The default value is all signals
active high.

All of the above parameters are set using the SetDrivePWM command and are read back using the GetDrivePWM

command.

For much more information on the function of the motor output control settings and signal outputs refer to the
MC78113 Electrical Specifications.

Juno Velocity & Torque Control IC User Guide

51




Figure 6-3:
Sign/
Magnitude
PWM Encoding

52

6.3 Sign/Magnitude PWM Output
Mode
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In Sign/Magnitude PWM mode, two pins ate used to output the motor command information for each motor phase.

One pin carries the PWM magnitude, which ranges from 0 to 100% as shown in Figure 6-3. A high signal on this pin

means the motor coil should be driven with voltage. A second pin outputs the sign of the motor command by going

high for positive sign, and low for negative.

In Sign/Magnitude PWM control mode only DC Brush and step motors can be controlled. Brushless DC motors
can not be controlled in this mode.

6.3.1 Settable Parameters

The following table shows the settable patameters when Sign/Magnitude PWM Control motor output mode is used.

Parameter

Range & Units

Description

PWM Switching Frequency

20 kHz
40 kHz
80 kHz
120 kHz

Higher inductance motors should be set for 20 kHz. Lower
inductance motors may use 40, 80, or 120 kHz to maximize
current control accuracy and minimize heat generation. The
default value for this parameter is 20 kHz.

PWM Limit

0-16,384 % output/163.84

This parameter allows the maximum PWM duty cycle to be
set. The default value for this parameter is 16,384 which
corresponds to 100% output.

PWM Signal Sense

1 6-bit mask

This parameter allows the signal sense of the PWM output
signals to be specified. A | in the bit mask indicates active
high, a 0 indicates active low. The default value is all signals
active high.
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All of the above parameters are set using the SetDrivePWM command and are read back using the GetDrivePWM

command.

For much more information on the function of the motor output control settings and output signals refer to the
MC78113 Electrical Specifications.

6.4 AmplifierEnable Signal

Regardless of whether the motor output mode is set to PWM High/Low or Sign/Magnitude PWM, Juno provides an
AmplifierEnable signal output that indicates whether the external amplifier circuitry is active or not. While not all external
amplifiers will require or provide such an input control, this signal is useful for general safety purposes, as well as to
simplify the task of ensuring startup without jogging the motor after powerup.

The output of this signal corresponds directly to the state of the motor output bit and the braking bit of the active
operating mode register. If either of these bits are on, the AmplifierEnable signal is active. If both bits are off, this signal

is inactive.

For additional information on this signal refer to the MC78713 Electrical Specifications.

6.5 Brake Signal

Juno’s Brake signal input provides a high speed PWM output override function that may be useful for safety protection
when using Brushless DC or DC Brush motors. When this input is active PWM output is driven to one of two user
programmable states; a braking state or a fully disabled state.

When a brake command is asserted with the braking function programmed Juno controls the PWM switches in such
a way that current will circulate within the coils and generate resistive back-EMF torque resulting in a deceleration of
the motor. When a brake command is asserted with the fully disabled mode programmed no back-EMF braking is
applied to the motor. The PWM switches will be disabled and the motor will “free wheel” and decelerate more slowly
to a stop.

The actual motor motion response after a brake signal is applied is application dependent. Particularly in applica-
tions where external forces exist on the motor, after the brake signal is applied the motor may not decelerate as
described above or may even accelerate. It is the responsibility of the user to determine whether, and how, the
Brake signal should be used in their application.

To program this function the SetEventAction command is used. If a brake function occurs, to re-enable normal
output the ResetEventStatus command along with the RestoreOperatingMode command is used. For more

information on Juno event processing see Section 8.3, "Hvent Action Processing."
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6.6 Enabling and Disabling the Motor
Output Module

If disabled, a “zero” command will be sent to the motor, or to each phase of the motor for multi-phase motors such
as brushless DC or microstepping motor. Depending on the motor output signal format, this zero command will be
represented in different ways. In particular, for PWM High/Low mode both the high side and low side switches will
be commanded off. For Sign/Magnitude PWM, both the sign signal and the magnitude signal will be driven to their
deactive state as set with the SetSignalSense command.

Note that disabling the motor output module may or may not immediately stop the motor. Disabling this module has
the effect of “free-wheeling” the motor, which means the motor may stop, coast, or even accelerate if a constant

external force exists such as the force of gravity on a vertical axis.

To disable the motor output module the command SetOperatingMode is used. The value set using this command
can be read using GetOperatingMode.

A disabled motor output module may be re-enabled in a number of ways. If the module was disabled using the
SetOperatingMode command, then another SetOperatingMode command may be issued. If this module was

disabled as part of an automatic event-related action (see Section 8.3, "Event Action Processing," for more

information), then the command RestoreOperatingMode is used.

The default condition of the motor output module is disabled, therefore to begin motor operations, the external
controller must send a SetOperatingMode command enabling the motor output module.
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Juno ICs include an internal profile generator that allows arbitrary contours of the commanded position, outer loop
quantity, velocity, current, or voltage to be generated. The profile generator is used in conjunction with host commands

to specify one or more move profiles.

To control the profile generator the user specifies a desired target acceleration, deceleration, and velocity. Using these
target parameters Juno’s profile generator performs calculations to determine the instantaneous position, velocity, and
acceleration of the profile at any given moment. These instantaneous profile values are called the commanded values.

During profile execution, some or all of the commanded values will continuously change as the profile is generated.
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D /
A V3 A2 V5
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The profile is executed by continuously accelerating at the user-specified target acceleration rate until the user-specified
target velocity is reached. The sign of the velocity parameter determines the initial direction of motion. Therefore the
velocity value sent to Juno can have a positive value (for positive direction motion), or a negative value (for negative

direction motion).

The axis decelerates at the user-specified target deceleration when a new velocity is specified with a smaller value (in
magnitude) than the present velocity, or when a new velocity has a sign that is opposite to the present direction of travel.
When a decelerating axis decelerates through a velocity of zero and reverses direction, after crossing through zero
velocity the axis will apply the acceleration target rate rather than the deceleration target rate. Specified acceleration and

deceleration values must always be positive.

Note that if the deceleration target value is set to zero Juno will use the specified acceleration target value for the

deceleration value.
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Figure 7-1 illustrates a complex profile in which the specified velocity and the direction of motion changes several
times.

7.1 Settable Parameters

To control Juno’s internal profile generator three parameters are specified; the maximum velocity, the acceleration, and

the deceleration. All of these parameters can be updated 'on the fly' to allow complex profile shapes to be created.

These parameters use an encoding denoted “X.Y” with X indicating the number of bits representing the integer
portion and Y indicating the number of bits used to represent the fractional component.

Name Format Representation, Range & units

Velocity 16.16 signed 32 bits (-32,768 to +32,767.9998 counts/cycle/2'®)
Acceleration 8.24 unsigned 32 bits (-128 to +127.99999994 counts/cycle?/22*)
Deceleration 8.24 unsigned 32 bits (-128 to +127.99999994 counts/cycle?/22*)

The host commands SetVelocity, SetAcceleration, and SetDeceleration load the specified target profile values.
The commands GetVelocity, GetAcceleration, and GetDeceleration retrieve them.

Specified target profile parameters are applied immediately. Whether or not these new parameters result in an
immediate change depends on the profile being drawn. For example if a new deceleration value is programmed while

the axis is accelerating this new deceleration value will not be applied until the profile enters a deceleration phase.

To query the instantaneous commanded profile values, use the commands GetCommandedPosition,
GetCommandedVelocity, and GetCommandedAcceleration.

Example

Juno’s profile generator will be used as the command source for the velocity loop. A profile that achieves a velocity of
135,000 encoder counts/sec is desired after an acceleration phase of 120 mSecs. Juno’s cycle time has been left at the
default value of 102.4 pSecs/cycle.

To convert counts/sec to counts/cycle we use: V (in counts/cycle) = V (in counts/sec) / (1.0 sec / .0001024 cycles/
sec). Plugging in, we get V = 135,000 counts/sec / 9,765 cycles/sec = 13.825 counts/cycle. To scale this command

to the 16.16 format used for the Juno target velocity we multiply by 216 giving a 32-bit target velocity command of
13.825 * 65,536 = 906,035.

The acceleration command must achieve the desired velocity in .120 sec * 9,765 cycles/sec = 1,172 cycles. Therefore
the acceleration is 13.825 counts/cycle / 1,172 cycle = .01180 counts/cyclez. To scale this command to the 8.24

format used for the Juno target acceleration we multiply by 2** giving a 32-bit acceleration command value to send of
.01180 * 16,777,216 = 197,971.

7.2 Programmed Stops

Juno provides an event action mechanism that allows automatic control of the motor axis under various conditions
such as motion error, over temperature condition, and disable. While some event action responses result in a complete
disabling of the profile generator, others allow programmed stops of the motor thereby enabling safe deceleration of

the motor to a stop.

Juno provides two types of controlled stops; a smooth stop and an abrupt stop. In a smooth stop the motor profile
decelerates at the user-specified deceleration value until it reaches a velocity of zero. In an abrupt stop the velocity is

instantaneously set to zero without a deceleration phase.
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When the profile generator is active both a smooth stop and an abrupt stop will result in the user specified target
velocity register being set to zero. This means that to restart a profile the target velocity has to be reloaded. For an
abrupt stop, in addition to the target velocity being set to zero the instantaneous commanded velocity it also set to zero.

Usually event actions occur as the result of some autonomous system event such as a motion error. It is also l
possible however to specify that an event action occurs immediately using the SetEventAction command. This
is a useful way for the host to execute smooth or abrupt stops directly via host commands.

For more information on setting up and recovering from event actions refer to Section 8.3, "HEvent Action

Processing."

It is the responsibility of the user to insure that event actions responses, smooth or abrupt stops, and all specified
profile parameters result in safe motion of the controller motor or actuator.

7.3 Enabling and Disabling the Profile
Generator Module

Although it is not the same type of control module as the loop control modules the profile generator can be similarly
enabled and disabled via the SetOperatingMode command. If disabled, the current commanded position will remain
at its present value and the commanded velocity is set to zero.

In addition to manually disabling this module, there are event-related actions that may result in the profile generator
module being automatically disabled. See Section 8.3, "Event Action Processing” for details.

A previously disabled profile generator module may be re-enabled in a number of ways. If the module was disabled
using the SetOperatingMode command, then another SetOperatingMode command may be issued. If the module

was disabled as part of an automatic event-related action then the command RestoreOperatingMode is used.

7.4 Profile Generator as Loop
Command Source

Despite the fact that the profile control parameters are referred to as accelerations and velocities, depending on how
the profile generator output is used the actual profiled command value may be an outer loop quantity such as pressure,
velocity, current, or voltage. The following table shows which profile generator registers are utilized for each Juno

control loop when profile generator is selected as the command source:

Profile

Generator Commanded
Control Loop Register Value Format
Position loop Position Position 32 bits
Outer loop Velocity Outer loop quantity 32 bits
Velocity loop Velocity Velocity 32 bits
Current loop Velocity Current 32 bits
Motor output Velocity Voltage 32 bits
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For more information on selecting the profile generator as the Juno control loop source and for detailed information

on command scaling refer to Chapter 3, Position/Quter I ogp, Chapter 4, Velocity I ogp, Chapter 5, Current I ogp, and
Chapter 6, Motor Output.
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8.1 Position Tracking

Juno ICs utilize position feedback to calculate the motor velocity, for safety checking, or for commutation. The most
common feedback method is quadrature encoding however Juno can also use Hall sensors, if provided, for position
feedback. Whether quadrature or Hall signals are used, Juno continually monitors the position feedback signals and
accumulates a 32-bit position value called the actual position. At power-up, the default actual position is zero.

The actual position can be set with one of two commands: SetActualPosition, and AdjustActualPosition. The current
actual position can be retrieved using the command GetActualPosition. SetActualPosition sets the position to an
absolute specified 32-bit value. AdjustActualPosition changes the current actual position by a signed relative value. For
example a value of —25 specified using this command will subtract 25 from the current actual position.

In addition to retrieving the actual axis position, it is also possible to retrieve an estimation for the instantaneous velocity
from the position feedback of the axis. This is accomplished using the command GetActualVelocity. Note that the
provided velocity is an estimated quantity, created by subtracting the current position from the previous cycle’s position.

It is therefore subject to jitter or noise, particulatly at low velocity.

8.1.1 Position Wraparound

The 32-bit actual position register continually tracks the axis position using either Juno's quadrature encoder signal
inputs or Hall sensor signal inputs. The full range of trackable positions is -2,147,483,647 to +2,147,483,647.

In the event that a spinning axis exceeds either of these position limits the actual position wraps around, with the largest
positive position wrapping around to become the smallest negative position, and the smallest negative position wrapping
around to become the largest positive number. When such a wraparound occurs a corresponding bit in the Event Status

register is set.

Position wraparound, should it occur during operation, is generally not a consequential event. In the case that Juno is
used for torque control or velocity control a position wraparound will have no impact on the behavior of the axis, nor
is there a limit to the number of such wraparound events that may occur. Users may want to be awate of a wraparound

if they ate directly reading the 32-bit actual position for purposes of internal comparison or safety checking.

In addition to the actual position register all of Juno's position based registers such as the commanded profile position
similarly automatically wrap, however only a wraparound of the actual position triggers the corresponding event status

flag being set.
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For more information on the Event Status register see Section 8.2.1, "Event Status Register."

8.1.2 Quadrature Encoder Input

Incremental encoder feedback utilizes two signal inputs: QuadA and QuadB. There is also an optional Index signal input,
which normally indicates when the motor has made one full rotation. The A and B signals encode square wave inputs
offset from each other by 90°.

To specify quadrature encoders for the position feedback source the command SetEncoderSource is used. A value
of 'none' can also be programmed indicating that there is no position feedback connected. To read the selected

encoder source back the command GetEncoderSource is used.

For complete information on interfacing to quadrature encoder signals refer to the MC78773 Electrical Specifications.

8.1.3 Quadrature Position Capture

Juno ICs support a high-speed position capture register that allows the current axis location (as determined by the
attached encoder) to be captured when triggered by the Index signal. When a capture is triggered, the contents of the
actual position registers are transferred to the position capture register, and the capture-received indicator (bit 3 of the

Event Status register) is set.

To read the capture register, the command GetCaptureValue is used. The capture register must be read before
another capture can take place. Reading the position capture register causes the trigger to be re-armed, allowing for
more captures to occur. As for all Event Status register bits, the position capture indicator may be cleared by using the
command ResetEventStatus.

8.1.4 Hall Sensor Input

Juno provides three pins for direct Hall sensor input. Hall sensors are generally only used with Brushless DC motors

and are used for commutation or commutation initialization.

In addition to commutation however, Hall inputs can also be used as the source for position feedback input. In this
mode Juno continually tracks the forward or backward progression of the motor axis using the Hall state transitions.
For more information on the function of Hall sensors and the Hall signal sequence that Juno expects for commutation

and position tracking refer to Section 9.1, "Hall-Based Commutation."

To specify Hall sensors for the position feedback source the command SetEncoderSource is used. To read this value
back the command GetEncoderSource is used.

The capture facility discussed in Section 8.1.3, "Quadrature Position Capture" does not function when the encoder
source is set to Halls. It only functions with the encoder source set to quadrature.

8.2 Status Registers

There are five bit-oriented status registers that provide a continuous report on the state of Juno and the controlled
axis. These five 16-bit registers are Event Status, Activity Status, Drive Status, Drive Fault Status, and Signal Status.
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8.2.1 Event Status Register

The Event Status register is designed to record events that do not continuously change in value but rather tend to
occur once due to a specific event. As such, each bit in this register is set by the MC78113 and cleared by the host.

The Event Status register is defined in the following table:

Bit Name Description
0 Reserved May contain O or |.
I Position wraparound Set when the actual motor position exceeds 7FFF FFFFh (the most positive position),
and wraps to 8000 0000h (the most negative position), or vice versa.
2 Reserved May contain 0 or |
Capture received Set when the high-speed position capture hardware acquires a new position value.
4 Motion error Set when the actual position differs from the commanded position by an amount more

than the specified maximum position error.

5-6 Reserved May contain 0 or |
Instruction error Set when an instruction error occurs.
Disable Set when the user disables MC 781 |3 by making the enable signal inactive.

Overtemperature fault ~ Set when an overtemperature fault occurs.

10 Drive Exception Set when one of a number of drive exceptions, such as bus overvoltage or
undervoltage fault occurs.

I Commutation error Set when a commutation error occurs.
12 Current foldback Set when current foldback occurs.

13 Run time error Set when a runtime error occurs.
14-15 Reserved May contain 0 or |.

The command GetEventStatus returns the contents of the Event Status register.

Bits in the Event Status register are latched. Once set, they remain set until cleared by a host instruction or a system
reset. Event Status register bits may be reset to 0 by the instruction ResetEventStatus, using a 16-bit mask. Register
bits corresponding to Os in the mask are reset; all other bits are unaffected.

The Event Status register may also be used to generate a host interrupt signal using the SetInterruptMask command.
See Section 8.2.1, "Event Status Register" for more information.

8.2.1.1 Instruction Error

Bit 7 of the Event Status register indicates an instruction error. Such an error occurs when an incorrect opcode is sent,

when an argument is out of bounds, or when some other instruction error occuts.

Should an instruction error occur, the invalid parameters are ignored, and the Instruction Error indicator of the
Event Status register is set.

To determine the nature of the instruction error a2 GetlnstructionError command is sent. This command indicates
the nature of the instruction error including when instruction errors occur during processing of initialization
commands in NVRAM. The returned word provides the first two errors recorded after the previous execution of the
GetlnstructionError command.

8.2.2 Activity Status Register

Activity Status register bits are not latched, they are continuously set and reset to indicate the status of the
corresponding conditions.
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The Activity Status register is defined in the following table:

Bit Name Description
0 Phasing initialized Set | when the motor’s commutation hardware has been initialized. Cleared 0 if not yet
initialized.

| At maximum velocity ~ Set | when the commanded velocity is equal to the maximum velocity specified by the
host. Cleared 0 if it is not. This bit only functions in conjunction with the profile

generator and is not set if the loop command source is set to anything other than profile

generator.
2-8 Reserved May contain 0 or |.
Position capture Set | when a new position value is available to read from the high speed capture

hardware. Cleared 0 when a new value has not yet been captured. While this bit is set,
no new values will be captured. The command GetCaptureValue retrieves a captured

position value and clears this bit, thus allowing additional captures to occur.

10 In-motion indicator Set | when the trajectory profile commanded position is changing. Cleared 0 when the

commanded position is not changing.

I1-15  Reserved May contain 0 or |.

The command GetActivityStatus returns the contents of the Activity Status register for the specified axis.

8.2.3 Drive Status Register

The Drive Status register functions similarly to the Activity Status register in that it is not latched. Status bits are
continuously set and reset to indicate the status of the corresponding conditions. The specific status bits provided by
the Drive Status register are defined in the following table:

Bit Name Description

0 Calibration completed Set | when an analog input calibration procedure is completed. Cleared if not
completed.

| In foldback Set | when in foldback, cleared 0 if not in foldback.

2 Overtemperature Set | when the axis is currently in an overtemperature condition. Cleared 0 if the

axis is currently not in an overtemperature condition.

Shunt Active Set | when shunt request is active. Cleared 0 if not.
4 In holding Set | when the axis is in a holding current condition, cleared 0 if not.
Overvoltage Set | when the axis is currently in an overvoltage condition. Cleared 0 if the axis is

currently not in an overvoltage condition.

6 Undervoltage Set | when the axis is currently in an undervoltage condition. Cleared 0 if the axis

is currently not in an undervoltage condition.

7-11 Reserved May contain 0 or |.

12 Output Clipped Set | when the amplifier current command can not be met because of output

clipping. This information is used by Juno to prevent PID saturation.

13 Reserved May contain 0 or |.

14 Initializing Set | when MC 781 13 is initializing from NVRAM commands. Set 0 when
initializing is complete.

15 Reserved May contain 0 or |.

The command GetDriveStatus returns the contents of the Drive Status register for the specified axis.
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8.2.4 Drive Fault Status Register

To simplify recovery from an electrical fault, as well as to read other drive-related faults, Juno provides a Drive Fault
Status register that can be read using the command GetDriveFaultStatus. The bits in this register operate similarly
to the bits in the Event Status register in that they are set by Juno, and cleared by the host. The command that is used
to clear the bits in this register is ClearDriveFaultStatus. Note that this command only clears bits that were indicated
as set by a previous GetDriveFaultStatus command. The following table indicates the contents of the Drive Fault

Status register:

Bit Name Description

0 Overcurrent Set | to indicate a fault due to a short circuit or overload in the drive output.
-4 Reserved May contain 0 or |

5 Overvoltage Set | to indicate an overvoltage condition of the external bus voltage input.
6 Undervoltage Set | to indicate an undervoltage condition of the external bus voltage input.
7 Reserved May contain 0 or |

8 Foldback Set | to indicate that a current foldback event has occurred.

9,10 Reserved May contain 0 or |

I Woatchdog Set | to indicate that a watchdog event has occurred.

12 Reserved May contain 0 or |

13 Brake Set | to indicate that the Brake signal input pin has gone active.

14, 15 Reserved May contain 0 or |

8.2.5 Signal Status Register

The Signal Status register provides real-time signal levels for various Juno IC I/O pins. The Signal Status register is
defined in the following table:

Bit Name Description

0 A encoder A signal of quadrature encoder input.

I B encoder B signal of quadrature encoder input.

2 Index encoder Index signal of quadrature encoder input.
3-6 Reserved May be 0 or |.

7 HallA/ AtRest Hall effect sensor input number A or AtRest signal.
8 HallB Hall effect sensor input number B.

9 HallC Hall effect sensor input number C.

10 Reserved May contain 0 or [.

I Pulse Pulse signal input.

12 Reserved May contain 0 or I.

13 /Enable Enable signal input.

14 FaultOut Fault signal output.

I5 Direction Direction signal input

The command GetSignalStatus returns the contents of the Signal Status register for the specified axis. All Signal
Status register bits are inputs except bit 14 (FaultOut).

The input bits in the Signal Status register represent the actual hardware signal level combined with the state of the
signal sense mask described in the next section. That is, if the signal level is high, and the corresponding signal mask
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bit is O (do not invert), then the bit read using GetSignalStatus will be 1. Conversely, if the signal mask for that bit is
a 1 (invert), then a high signal on the pin will result in a read of 0 using the GetSignalStatus command.

The output bits in the Signal Status register are not affected by the signal sense mask. For these signals a 1 indicates

an active condition and a 0 indicates a non active condition.

8.2.5.1 Signal Sense Mask

The bits in the Signal Status register represent the high/low state of vatious signal pins. It is possible to invert the
incoming signal by host command to match the signal interpretation of the user’s hardware. This function is accessed
via the command SetSignalSense, and can be read back using the command GetSignalSense.

The default value of the signal sense mask is “not inverted” except for the Index signal, which has a default value of

“inverted.” The bits of the signal sense mask register are defined in the following table:

Bit Name Interpretation

0 A encoder Set | to invert quadrature A input signal. Clear 0 for no inversion.

| B encoder Set | to invert quadrature B input signal. Clear O for no inversion.

2 Index encoder Set | to invert, clear O for no inversion. This means that for active low

interpretation of index signal, set to 0; and for active high interpretation, set to |.

3-6 Reserved

7 Hall A/AtRest Set | to invert HallA or AtRest signal. Clear 0 for no inversion.

8 Hall B Set | to invert HallB signal. Clear 0 for no inversion.

9 Hall C Set | to invert HallC signal. Clear 0 for no inversion.

10 AxisOut Set | to invert AxisOut signal. Clear 0 for no inversion.

I Pulse Set | to define active transition as low-to-high. Clear 0 to define active transition as
high-to-low.

12 Motor Direction Set | to invert Motor Direction. Clear 0 for no inversion.

I13-14 Reserved

15 Direction Set to | to invert Direction signal. Clear 0 for no inversion.

8.3 Event Action Processing

Juno ICs provide a programmable mechanism for automatically reacting to various safety or performance-related
events. This mechanism is called event action processing.

Each monitored event condition may have an associated event action defined for it. The following table lists each of
the event conditions that Juno monitors along with the default event actions that will occur if no user specified event

actions are provided. Unless otherwise noted all event actions are allowed for each event:

Condition Name Default Action Description

Immediate Not Applicable Occurs immediately upon being specified. This event
allows the host to explicitly execute an event action

Motion error Disable Motor Output Occurs when a motion error condition is detected

Current foldback Disable Motor Output Occurs when the amplifier current output goes into a
foldback condition.

Encoder Position Capture  No Action Occurs when the quadrature encoder Index signal has
triggered a position capture

Overtemperature Disable Motor Output Occurs when an overtemperature condition is detected

Disabled Disable Motor Output Occurs when the Enable signal goes inactive. The pro-
grammed event action must be Disable Motor Output or
Brake
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Condition Name

Default Action

Description

Commutation error

No Action

Occurs when a commutation error is detected. The pro-

grammed event action must be no action, Disable Motor
Output, or Brake

Overcurrent Disable Motor Output Occurs when an overcurrent condition is detected. The
programmed event action must be Disable Motor Output
or Brake

Overvoltage Disable Motor Output Occurs when an overvoltage condition is detected

Undervoltage Disable Motor Output Occurs when an undervoltage condition is detected

Woatchdog timeout No Action Occurs when a watchdog timeout condition is detected

Brake signal Brake Occurs when the Brake signal goes active. The pro-

grammed event action must be Disable Motor Output or
Brake

The following table describes the event actions that can be programmed:

Action Name Description

No Action No action taken.

Smooth Stop Causes a smooth stop to occur at the current active deceleration rate.
Abrupt Stop Commands an instantaneous halt of the motor.

Disable Position/Outer Loop Disables profile generator and position/outer loop module.

Disable Velocity Loop Disables profile generator, position/outer loop, and velocity loop.

Disable Current Loops Disables profile generator, position/outer loop, velocity loop, and

current loop modules.

Disable Motor Output Disables profile generator, position/outer loop, current loop, velocity

loop, and motor output modules.

Brake Turns the brake function on and disables the profile generator, position/
outer loop, velocity loop, current loop, and motor output module.

8.3.1 Event Processing

Upon powerup and initialization completion Juno begins to continuously monitor the event conditions and executes
the programmed event action if they occur. When the programmed action is executed, related actions may occur such

as setting the appropriate bit in the Event Status register.

To recover from an event action, the cause of the event occurring should be investigated and corrected. In cases where
an event status bit was set this flag should be reset using the ResetEventStatus command. The command
RestoreOperatingMode is then used to restore the operating mode previously specified using SetOperatingMode

command. Note that if the event condition is still present, then the event action will immediately occur again.

It is the responsibility of the user to safely and thoroughly investigate the cause of event-related events, and only [ ]
restart motion operations when appropriate corrective measures have been taken. l

If the event action programmed was either No _Action, Abrupt Stop, or Smooth Stop, then the RestoreOperatingMode
command will have no effect. It is intended to restore disabled modules only, and has no effect on profile generator

parameters.

Once programmed, an event action will be in place until reprogrammed. The occurrence of the event condition does

not reset the programmed event action.
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8.3.2 Automatic Event Recovery

In order to facilitate easier recovery from safety-related faults such as overtemperature or current foldback an
automatic recovery process is available. This mode is most often used when operating Juno without a host and in
conjunction with the FaultOut signal, but it may be selected even when host communications are available. Automatic
event recovery mode is activated using the SetDriveFaultParameter command, and may be read back using
GetDriveFaultParameter.

To program the FaultOut signal to go active upon occurrence of various programmable conditions the

SetFaultOutMode command is used. After the FaultOut signal goes active, the external logic must delay a minimum
of 150 pSec, but thereafter may request that Juno attempt to automatically recover by deasserting, and then asserting,
the Enable signal. The Enable signal must be in the deasserted state for at least 150 uSec for the request to be recognized.

When an automatic recovery request is recognized by Juno it behaves as though the command sequence

ResetEventStatus 0 and RestoreOperatingMode has been sent to it by a host controller. As is the case when these
commands are sent by the host controller, if the fault condition is still present when recovery is attempted, Juno will
immediately again disable itself, and a recovery procedure must once again be requested. If the fault has been corrected

however a recovery request will result in resumption of normal Juno operation.

8.4 FaultOut Signal

Juno’s FaultOut signal is used to indicate an occurrence of one or more of the faults indicated in the previous sections
as well as other fault conditions. This signal is always active high. Its sense cannot be changed using the command
SetSignalSense. Any bit condition of the Event Status register may be used to trigger activation of the fault signal.
This is done using the command SetFaultOutMask. The value set using this command can be read back using
GetFaultOutMask.

The bit conditions specified via this mask are logically ANDed with the Event Status register. Any resultant non-zero

value will cause the FaultOut signal to go active. See Section 8.2.1, "Event Status Register" for information on the Event

Status register.
Example

Programming SetFaultOutMask with a value of 1,040 (0x410) configures the FaultOut signal to be driven high upon

a motion error (bit #4) or a drive exception error (bit #10).

8.5 Trace

Trace is a powerful feature of the Juno ICs that allows various parameters and registers to be continuously captured
and stored to an on-chip RAM buffer. The captured data may later be downloaded by the host. Traces are useful for
optimizing servo performance, verifying trajectory behavior, capturing sensor data, or to assist with any type of

monitoring where a precise time-based record of the system’s behavior is required.
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Trace data capture (by the Juno IC) and trace data retrieval (by the host) are executed as two separate processes. The
host specifies which parameters will be captured, and how the trace will be executed. Then Juno performs the trace.
Finally, the host retrieves the data after the trace is complete. It is also possible to perform continuous data retrieval,
even as Juno is continuing to collect additional trace data.

To start a trace, the host must specify a number of parameters. They ate:

Parameter Description

Trace period Juno can capture the value of the trace variables for every single cycle, every other cycle, or at any
specified period.

Trace variables There are many dozens of separate variables and registers within the Juno IC that may be traced;
for example, actual position, Event Status register, position error, etc. The user must specify the
variables from which data will be recorded.

Trace mode Juno can trace in one of two modes: one-time, or rolling mode. This determines how the data is

stored, and whether the trace will stop automatically or whether it must be stopped by the host.

Trace start/stop To allow precise synchronization of data collection, it is possible to define the start and stop
conditions conditions for a given trace. Juno monitors these specified conditions and starts or stops the trace

automatically without host intervention.

8.5.1 Trace Period

The tracing system supports a configurable period register that defines the frequency at which data is stored to the
trace buffer. The tracing frequency is specified in units of cycle times.

The command SetTracePeriod sets the trace period, and the command GetTracePeriod retrieves it.

8.5.2 Trace Variables

When traces are running, one to four data variables may be stored to the trace buffer at the same time. The four trace
variable registers are used to define which parameters are stored. The following commands are used to configure the

trace variables.

The command SetTraceVariable sclects which traceable parameter will be stored by the trace variable specified. The
command GetTraceVariable retrieves this same value.

Morte than 50 variables are available for trace on Juno ICs. For a complete list of traceable variables please refer to the
Juno Velocity & Torgue Control IC Programming Reference.

8.5.3 Trace Modes

As trace data is collected, it is written to sequential locations in the trace buffer. When the end of the buffer is reached,

the trace mechanism will behave in one of two ways, depending on the selected mode.
If one-time mode is selected, then the trace mechanism will stop collecting data when the buffer is full.

If rolling-buffer is selected, then the trace mechanism will wrap around to the beginning of the trace buffer and
continue storing data. Data from previous cycles will be overwritten by data from subsequent cycles. In this mode, the

diagnostic trace will not end until the conditions specified in a SetTraceStop command are met.

Use the command SetTraceMode to select the trace mode. The command GetTraceMode retrieves the trace mode.
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8.5.4 Trace Start/Stop Conditions

The command SetTraceStart is used to specify the conditions that will cause the trace mechanism to start collecting
data. A similar command, SetTraceStop, is used to define the condition that will cause the trace mechanism to stop
collecting data. Both SetTraceStart and SetTraceStop allow one of several trigger types to be programmable as
indicated in the following table:

ID Name Description

0 Immediate This trigger type indicates that the trace starts (stops) immediately when the SetTraceStart
(SetTraceStop) command is issued. If this trigger type is specified, the trigger axis, bit
number, and bit state value are not used.

2 Event Status The specified bit in the Event Status register will be constantly monitored. When that bit
enters the defined state (0 or |), then the trace will start (stop).

3 Activity Status ~ The specified bit in the Activity Status register will be constantly monitored. When that bit
enters the defined state (0 or |), then the trace will start (stop).

4 Signal Status The specified bit in the Signal Status register will be constantly monitored. When that bit
enters the defined state (0 or |), then the trace will start (stop).

5 Drive Status The specified bit in the Drive Status register will be constantly monitored. When that bit

enters the defined state (0 or |), then the trace will start (stop).

8.5.5 Downloading Trace Data

Once a trace has executed and the trace buffer is full (or partially full) of data, the captured data may be downloaded by the
host using the standard commands to tead from the external buffer memory. See Section 8.5.7, "Buffer Commands" for

a complete description of memory buffer commands.

The command GetTraceCount is used to get the number of 32-bit words of data stored in the trace buffer. This
value may be used to determine the number of ReadBuffer commands that must be issued to download the entire

contents of the trace buffer.

Variable 1 Variable 2 | Variable 3 | Variable 1 | Variable 2 /

Address +0 +1 +2 +3 +4 o o o

During each trace period, each of the trace variables is used in turn to store a 32-bit value to the trace buffer. Therefore,
when data is read from the buffer, the first value read would be the value corresponding to trace variable 1, the second
value will correspond to trace variable 2, up to the number of trace variables used. Figure 8-3 show this, illustrating an
example trace buffer when 3 variables were specified for trace.

8.5.6 Trace & NVRAM Memory Buffers

Juno ICs are capable of accessing memory for the retrieval of trace data stored in RAM or in connection with the
NVRAM.

These memory operations utilize buffers, which are contiguous blocks of memory with a defined start location, size,
and access ID #. Juno provides two pre-defined buffers, a RAM trace buffer which has a start address of 0x0000 0000,
a size of 6,144 16-bit words, and an ID # of 0. Juno’s NVRAM buffer has a start address of 0x2000 0000, a size of
1,024 16-bit words, and an ID# of 1.
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Central to accessing buffers are the read index and the write index. The read index may be assigned a value between
0 and L-1 (where L is the buffer length). It defines the location from which the next value will be read. When a value
is read from the memory buffer, the read index is automatically incremented, thus selecting the next value for reading,

Similarly, the write index ranges from 0 to I.-1 and defines the location at which the next value will be written. The
write index is incremented whenever a value is written to a buffer. The default value for both the read and write indexes

are 0.

If either the read or the write index reaches the end of the buffer, it is automatically reset to 0 on the next read/write

operation.

8.5.7 Buffer Commands

The table below details host commands that access, and monitor buffers.

Command Argument Description

GetBufferStart bufferIlD Returns the base address of the specified buffer.
GetBufferLength bufferlD Returns the length of the specified buffer.
SetBufferReadIndex bufferID, index Sets the read index for the specified buffer. index is a 32-bit

integer in the range 0 to length—1, where length is the current
buffer length.

GetBufferReadIndex bufferIlD Returns the value of the read index for the specified buffer.

SetBufferWritelndex bufferID, index Sets the write index for the specified buffer. index is a 32-bit
integer in the range 0 to length-2, where length is the current
buffer length.

GetBufferWritelndex bufferlD Returns the value of the write index for the specified buffer.

ReadBuffer bufferlD Returns a 32-bit value from the specified buffer. The location
from which the value is read is determined by adding the base
address to the read index. After the value has been read, the
read index is incremented. If the result is equal to the current
buffer length, the read index is set to zero (0).

ReadBuffer|6 bufferlD Returns a |6-bit value from the specified buffer. This command
is otherwise identical to the ReadBuffer command.
WriteBuffer bufferID, value Writes a 32-bit value to the specified buffer. The location to

which the value is written is determined by adding the base
address to the write index. After the value has been written,
the write index is incremented. If the result is equal to the cur-
rent buffer length, the write index is set to zero (0).

The trace buffer (BufferID 0) may be written to or read from by the user as desired. The NVRAM buffer (BufferID1)

may not be written to by buffer commands but may be read from via buffer commands. For information on writing

to the Juno NVRAM buffer refer to Section 12.4, "Non-Volatile NVRAM) Storage."

8.6 Host Interrupts

Interrupts allow the host to become aware of a special Juno condition without the need for continuous monitoring or
polling of the status registers. For this purpose Juno provides a physical Hostlnterrupt signal that is generally connected
to an interrupt input on the microprocessor. For more information on this HostInterrupt signal, see the MC 78113
Electrical Specifications.

If CANbus communications are being used host interrupt events also cause a special CAN message to be sent. See

Section 13.4, "Controller Area Network (CAN)" for more information on CANbus communications.
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The events that trigger a host interrupt are the same as those that set the assigned bits of the Event Status register.

Using a 16-bit mask, the host may condition any or all of these bits to cause an interrupt. This mask is set using the
command SetInterruptMask. The value of the mask may be retrieved using the command GetInterruptMask. The
mask bit positions correspond to the bit positions of the Event Status register. If a 1 is stored in the mask, thena 1 in

the corresponding bit of the Event Status register will cause an interrupt to occut. See Section 8.2.1, "HEvent Status

Registet” for details.

Juno continually and simultaneously scans the Event Status register and interrupt mask to determine if an interrupt
has occurred. When an interrupt occurs, the Hostlnterrupt signal is made active. At this point, the host can respond to
the interrupt but is not required to do so.

To process the interrupt, normal Juno commands are used. The specific commands sent by the host to process the
interrupt depend on the nature of the interrupting condition. At minimum, the interrupting bit in the Event Status
register should be cleared using the ResetEventStatus command. If this is not done then the same interrupt will

immediately occur once interrupts are re-enabled.

Once the host has completed processing the interrupt it should send a ClearInterrupt command to clear the
interrupt line and re-enable interrupt processing. Note that if another interrupt is active the interrupt line will only be

cleated momentarily and then reasserted.
Example

The following provides a typical sequence of interrupts and host responses. In this example, a motion error has
occurred causing an abrupt stop. In this example, the interrupt mask has been set so that motion errors will cause an

interrupt.

Event Host action

Motion error generates interrupt.

Sends GetEventStatus instruction, detects that motion error flag is set.
Issues a ResetEventStatus command to clear.

Returns the axis to closed loop mode by issuing a RestoreOperatingMode

command.

Issues a ClearInterrupt command to reset the interrupt signal.

Juno IC clears motion error bit and
disables host interrupt line.

At the end of this sequence, all status bits are cleared and the interrupt line is inactive.
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In This Chapter
P Hall-Based Commutation
P  Encoder-Based Commutation

Juno ICs provide a number of special features for supporting Brushless DC motors. These include input of Hall sensors,

multi-phase signal generation, and a number of other capabilities related to phasing control and commutation.

To drive a brushless DC motor the motot’s rotor angle must be known as it continually changes. This is accomplished
using one of two methods. The first is by using Hall sensors, and the second is by using the quadrature position encoder.
In both cases these sensors must be directly connected to the motor shaft. Generally speaking, if both Hall signals and
encoder signals are available the encoder should be used for commutation as it will provide smoother motion and higher

overall performance than Hall sensors.

To select whether the phasing of the motor will be Hall-based or encoder-based, the command SetCommutationMode
is used. The value set can be read back using the command GetCommutationMode.

9.1 Hall-Based Commutation

The Hall sensor signals are input directly to Juno through the signals HallA, HallB, and HallC. To read the current
status of the Hall sensors, use the command GetSignalStatus.

To accommodate varying types of Hall sensors, ot sensors containing inverter circuitry, the signal level/logic
interpretation of the Hall sensor input signals may be set through the host. The command SetSignalSense accepts a
bit-programmed word that controls whether the incoming Hall signals are interpreted as active high or active low. To
read this Hall interpretation value the command GetSignalSense is used.

9.2 Encoder-Based Commutation

If the motor commutation will occur via an encoder the number of encoder counts per electrical cycle must be specified.
This parameter indicates to Juno the number of encoder counts required to complete a single full electrical cycle. The
number of electrical cycles can usually be determined from the motor manufacturer’s specification and is exactly half the
number of poles.

The command used to set the number of encoder counts per electrical cycle is SetCommutationParameter. To read
this value back use the command GetCommutationParameter. The number of encoder counts per electrical cycle is
not required to be an exact integer.
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9.2.1 Phase Initialization
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When commutating via the encoder, in addition to specifying the counts per electrical cycle Juno must determine the
proper initial phase angle of the motor relative to the encoder position. This information is determined using a
procedure called phase initialization. Note that a phase initialization procedure is not necessary if Hall-based
commutation is selected.

Juno provides three methods to perform phase initialization: Hall-based, pulse phase, and direct-set. Each are
described in detail in the subsequent sections.

9.2.1.1 Hall-Based Phase Initialization

The most common and the simplest method of encoder phase initialization is Hall-based. In this mode, three Hall
sensor signals are used to determine the motor phasing. Encoder-based commutation begins automatically after the
motor has moved through at least one Hall state transition.

Figure 9-1 illustrates the relationship between the state of the three Hall sensor inputs, the sinusoidally commutated
phase current commands, and the motor phase-to-phase back EMF waveforms during forward motion of the motor.
A Hall to back EMF phasing diagram is a common way to specify the required alighment and a such a diagram is often
provided by the motor supplier.

Juno expects 120-degree separation between Hall signal transitions. To commutate using Hall sensors located 60
degrees apart, swap and invert the appropriate Hall signals and motor phases to generate the expected Hall states. Note
that the command SetSignalSense can be used to accomplish hall signal inversion.

To set Juno for Hall-based initialization, use the command SetPhaselnitializeMode. Initialization is performed using
the command InitializePhase.
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9.2.1.2 Pulse Phase Initialization

Juno provides the ability to initialize encoder-based phasing of Brushless DC motors without the need for explicit
phasing signals such as Hall sensors using a proprietary technique called pulse phase initialization. Pulse phase
initialization executes by applying a rapid burst of positive/negative command pulse pairs followed by a longer ramp
pulse. As long as the motor motion is unencumbered through this sequence the resulting phase initialization should

be accurate and repeatable.
To set Juno for pulse phase initialization use the command SetPhaselnitializeMode.

The following table shows the parameters that are set in association with pulse phase initialization:

Parameter Range & Units Description

PositivePulseTime 0-32,767 cycles Is the time that the positive portion of the burst pulse is
applied

NegativePulseTime 0-32,767 cycles Is the time that the negative portion of the burst pulse is
applied

PulseMotorCommand 1-32,767 % | 327.67 Is the motor command that will be applied during the burst

mode of the initialization procedure. The specified value rep-
resents a % motor command from 0 to 100%.

RampMotorCommand 1-32,767 % | 327.67 Is the motor command that is applied during the ramp por-
tion of the initialization procedure. The specified value repre-
sents a % motor command from 0 to 100%.

RampTime 0-32,767 cycles Is the time that the slow ramp and hold is applied.

To set any of these five 16-bit parameters the command SetPhaseParameter is used. GetPhaseParameter is used

to read these same values back.

After these parameters are loaded in an InitializePhase command is sent. While varying somewhat with motor size,
typical total durations of the pulse phase sequence is 500 mSec. A flag in the Activity Status register indicates whether
phase initialization has completed.

Setting up appropriate pulse phase parameters for various applications can most easily be accomplished with PMD’s
Pro-Motion software. To perform your own determination of pulse phase parameters refer to the Juno Velocity & Torgue
Control IC Programming Reference.

Pulse phase initialization can only function properly if motor movement is free and unencumbered.

9.2.1.3 Direct-Set Phase Initialization

If, after power-up, the location of the motor phasing is known, the phase angle can be directly set using the
SetCommutationParameter command. This typically occurs when sensors such as resolvers are used where the

returned motor position information is absolute in nature.

9.2.2 Automatic Phase Correction

To enhance commutation reliability the Juno ICs provide the ability to automatically correct the commutation phase
during encoder-based commutation. Note that if Hall-based commutation is used, this feature is not necessary. Either

an index signal or Hall signals can be used for this automatic correction function.
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9.2.2.1 Index-Based Phase Correction

To utilize automatic phase correction the motor encoder provides an index pulse signal to Juno once per rotation.
Index phase referencing is recommended for all rotary brushless motors with quadrature encoders directly mounted
on the motor shaft. For linear brushless motors, it is generally not used. However, it may be used as long as the index

pulses are arranged so that each pulse occurs at the same phase angle within the commutation cycle.

With an index signal properly installed, Juno will automatically adjust the commutation angle to correct for any small
losses of encoder counts that may occur. If the loss of encoder counts becomes excessive, or if the index pulse does
not arrive at the expected location within the commutation cycle, a commutation error occurs, which is indicated via
bit 11 in the Event Status register. This bit is set if the required cotrection is greater than (PhaseCounts / 128) + 4.

To recover from a commutation error this bit should be cleared by the host. Depending on the cause of the error there

may be no further errors or errors may continue to occut.

A commutation error may indicate a serious problem with the motion system, potentially resulting in unsafe mo-
tion. It is the responsibility of the host to determine and correct the cause of commutation errors.

9.2.2.2 Hall-Based Phase Correction
Hall signals may also be used for automatic commutation phase adjust when an index pulse is not available.

Hall-based phase error detection functions similarly to index-based phase correction. Bit 11 of the Event Status
register signals a commutation error and recovery occurs in the same manner. However the absolute amount of error
allowed before a commutation error occuts, normally Phase Counts / 128 + 4 with index-based phase correction, is
Phase Counts/32.

To set the commutation phase correction mode to either Index or Hall-based use the command

SetPhaseCorrectionMode. The command GetPhaseCorrectionMode reads back these same values.

9.2.3 Adjusting the Phase Angle

Juno supports the ability to change the motor’s phase angle directly, both when the motor is stationary and when it is
in motion. Although this is not generally required, it can be useful during testing, or during phase initialization when
direct-set methods are used. Note that the phase angle can not be changed if Hall-based commutation is used.

To change the phase angle when the motor is stationary, use the command SetCommutationParameter. To change
the phase angle while the motor is moving, the index pulse is required and a quantity known as the phase offset rather
than the phase angle is adjusted. The phase offset, once set, takes effect only when an index pulse occurs. After phase
initialization has occurred, the phase angle of the index pulse is stored in the phase offset register. This 32-bit offset
register can be read using the command GetCommutationParameter.

For a given motor, the index pulse may be located anywhere within the commutation cycle, since it will usually vary in
g p Y ) y y vary
position from motor to motor. Only motors that have been mechanically assembled so that the index position is

referenced to the motor windings will have a consistent index position relative to the commutation zero location.

Before phase initialization has occurred, the phase offset register will have a value of FFFF FFFFh. Once phase
initialization has occurred and the motor has been rotated so that at least one index pulse has been received, the phase
offset value will be stored as a positive number with a value between 0 and the number of encoder counts per electrical

cycle (phase counts).

The phase offset value may also be changed any number of times while the motor is in motion. The changes that are

made should be small; this will prevent sudden jumps in the motor motion.
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In This Chapter

Selecting the Step Motor Position Command Source

Step Motor Waveform Generation
Encoder Feedback

Opverall, the control features of Juno when used with a step motor are similar to that when used with a servo motor. The
primary differences between setvo motors and step motors is that there is no position/outet loop ot velocity loop
module used for step motors and that motor output waveform generation is specific to the two-phase format used with
step motofs.

10.1 Selecting the Step Motor Position
Command Source

AtRest
Position Current Loop &
SPI Direct Input O~ -~ Command Waveform
| . Two-Phase Step Motor
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I
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Current Feedback

Quadrature Feedback (MC74113 Only)

Figure 10-1 provides an overview of the Juno IC control flow when driving step motors. Two position command sources
are available; pulse & direction signal inputs and the direct input SPI port.

10.1.1 Pulse & Direction Command Input

When pulse & direction is selected as the command source the incoming Pulse & Direction signals are processed by the
Juno and the resultant count is stored in a 32 bit position register. Pulse & direction input is a popular and easy to use
method to continuously stream a commanded position to the Juno IC.

To select the step motor position command source the SetDriveCommandMode command is used. To read this value
back the GetDriveCommandMode command is used. To read the current value of the command position register the
GetCommandedPosition command is used.

For more information on Pulse & Direction signal input, timing, and related electrical information refer to the MC78773
Electrical Specifications.
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10.1.2 Direct-Input SPI Command

Direct-input SPI is a convenient position command format for applications that generate the position profile via a
microprocessor located on the same PCB. This is because most microprocessors provide one or more SPI ports
however relatively few provide pulse & direction signal generation.

When direct-input SPI is selected the user continuously streams a signed 16-bit word containing the relative position
change from the previous SPI direct input command. As for pulse & direction signal input, these direct input SPI

commands are continuously processed and the resultant count is stored in a 32 bit position register.

To avoid jitter in the step motor motion the SPI direct input commands should be streamed at a fixed regular
interval, varying in arrival time by no more than 1% of the interval between successive updates. For best perfor-
mance the update frequency should be between 1.0 kHz and 10 kHz.

For additional information on direct input SPI formats refer to Section 14.3, "Direct Input SPI (Serial Peripheral
Interface)." For detailed electrical information on the SPI bus refer to the MC78713 Electrical Specifications.

10.2 Step Motor Waveform Generation

Phase A Phase B

2-Phase Microstepping

When driving step motors Juno generates sinusoidal waveforms consisting of phase A and phase B outputs separated
by 90 degrees. This is shown in Figure 10-2. The overall sinusoidal waveform is broken into discrete microstep
positions, with the number of microsteps per full step (a full step is one quarter of a full electrical cycle) being user
settable. Each microstep represents a discrete addressable position of the step motor, and thus the greater the number
of microsteps per full step the greater the number of resolvable motor positions.

The number of microsteps per full step is specified using the phase counts register of the
SetCommutationParameter command. The phase counts setting represents the number of microsteps per

electrical cycle (four times the desired number of microsteps per full step).

For example if a 1.8° step motor (1.8° of motor rotation per full step) is set up with a resolution of 64 microsteps per
full step the phase counts setting will be 64 x 4 = 256, and the number of resolvable positions per mechanical rotation
will be 360° / 1.8° x 64 = 12,800 microsteps pet motor rotation. Note that this represents the theoretical positioning
resolution, but does not necessarily mean the motor will have this precision or even this number of actual resolved

mechanical positions. This depends on a number of application characteristics including system friction, drive, torque,

and motor linearity.

The minimum number of microsteps per full step is one (phase counts setting of four). The maximum number of

microsteps per full step is 256 (phase counts setting of 1,024).
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10.2.1 DriveCurrent

A user-specified drive current controls the amplitude of the microstepping waveform. To set the drive current the
command SetCurrent is used. A value between 0 and 32,767 is set, representing an amplitude of zero to 100 percent.

Depending on whether the current loop module is enabled the provided drive current value will express either a
current or a voltage. With the current loop active a drive current command of, for example, 100 % will command the
highest possible available current to the motor. With the current loop not active (Juno operating in voltage mode) a

100% drive current command will command the highest possible available voltage.

For information on converting commanded current values to actual delivered amps at the motor refer to
Section 14.1.1, "CurrentA-D Input & Current Scaling,"

Determining what drive current to specify when the step motor is actively moving is generally done via trial and error.

Higher values allow greater acceleration and top speed but generate more heat in the motor.

10.2.2 Holding Current and the AtRest Signal

Juno ICs provide an AtRest signal input which is used to indicate whether the axis is in motion. In conjunction with
this signal a holding current command can be defined by the user which is only applied when the motor is at rest (not

moving). By applying the holding current when the motor is not moving heat generation can be significantly reduced.

The holding current value is set using the command SetCurrent. To read the value set use the command
GetCurrent. Note that the value specified actually represents the limit of the output current while the motor is in a
holding condition. For example if the drive current is lower than the holding current, the drive current value rather
than the holding current will be used.

A bit indicating whether the axis is currently in a holding condition is available in the Drive Status register. To read this
register use the command GetDriveStatus.

10.3 Encoder Feedback

The Juno 74113 step motor control IC supports encoder input while the MC75113 step motor control IC does not.
See Section 8.1.2, "Quadrature Encoder Input" for more information on encoder position feedback.

Most encoder commands operate as for servo motors. For example the current position is retrieved using the
command GetActualPosition, the position capture location is retrieved using GetCaptureValue, and the
AdjustActualPosition and SetActualPosition commands may be used to alter the current position.

10.3.1 Encoder to Microstep Ratio

In many step motor systems, the ratio of microsteps to encoder counts is not necessarily exactly one. Juno
accommodates this by allowing the ratio of encoder counts to microsteps to be explicitly specified using the command
SetEncoderToStepRatio. This value can be read back using the command GetEncoderToStepRatio.

This command accepts two parameters: the first parameter is the number of encoder counts per motor rotation, and

the second parameter is the number of microsteps per motor rotation.

For example, if a step motor with a 1.8 degree full step size is used with an encoder with 4,000 counts per motor

rotation, the encoder and microsteps per tev parameters would be 4,000 and 200 (360/1.8) respectively.

In cases where the number of steps, microsteps, or encoder counts per rotation exceeds the allowed maximum of

32,767, the parameters may be specified as fractions of a rotation, as long as the ratio is accurately maintained.
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10.3.2 Encoder Position Units

With the MC74113 Juno IC, or when a MC78113 is used with the motor type set to step motor, the actual position
units are in microsteps by default. If desired the actual position units can be set to encoder counts using the command
SetActualPositionUnits. The SetActualPosition, GetActualPosition, AdjustActualPosition and
GetCaptureValue commands are affected by this setting.

If the actual position units are set to encoder counts, then actual position comes directly from the encoder input. If
the units are set to microsteps, then the encoder input is converted to microsteps using the value specified by
SetEncodertoStepRatio command.

10.3.3 Stall Detection

In addition to passively returning the measured motor position via the GetActualPosition command, Juno ICs can
actively monitor the encoder position and detect a motion error. The motion error mechanism allows Juno to detect
when the step motor has stalled or otherwise lost steps during motion. This typically occurs when the motor

encounters an obstruction, or otherwise exceeds its rated torque specification.

Automatic stall detection operates continuously once it is initiated. The current desired position (commanded
position) is compared with the actual position (from the encoder), and if the difference between these two values
exceeds a specified limit, a stall condition is detected. The user-programmed register SetLoop determines the

threshold at which a motion error is generated.

Processing of a motion error while using a step motor is identical to that for servo motors. See Section 3.5, "Motion

Error Detection" for details.
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Juno supports automatic detection of major amplifier, voltage supply, or other electrical hardware problems. The

following sections describe these safety features.

Figure 11-1 provides an overview of amplifier & DC safety-related signals. For more information on interfacing to these
signals as well as information on signal scaling and signal conditioning circuitry refer to the MC78713 Electrical

Specifications.
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11.1 Overtemperature Sense

Juno provides the capability to continually monitor temperature using a direct input sensor. Usually the temperature

sensor is placed on or near the switching amplifier circuitry, but ultimately this is up to the user. A programmable value
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set using the command SetDriveFaultParameter is compared to a value read from Juno’s Temperature signal, and if
the value read from the sensor exceeds the programmed threshold, an overtemperature fault occurs. Both temperature
increasing/voltage increasing and tempetature increasing/voltage decreasing sensors can be accommodated. To read
the value set the command GetDriveFaultParameter is used.

An overtemperature fault will cause the following events:
*  Depending on how event processing has been set one or more modules may be disabled.
* The overtemperature bit in the Event Status register is set active.

To recover from this condition, the user should determine the reason for the fault and correct accordingly. It is always
the responsibility of the user to maintain safe operating conditions of the drive and associated electronics. Once this
has occurred, the overtemperature bit of the Event Status register should be cleared. This can be accomplished using
ResetEventStatus. The normal operation of the control modules can then be restored using
RestoreOperatingMode.

The instantaneous status of the overtemperature threshold comparison can be read using the command
GetDriveStatus. If the overtemperature fault condition is still occurring at the time the overtemperature bit of the
Event Status register is cleared, this bit will immediately be set again, and the recovery sequence must be executed
again.,

Once programmed the temperature comparison function operates continuously. To disable it, a value of 32,767 should

be programmed. To read the current value of the temperature sensor, the command GetTemperature is used.

11.2 Overvoltage Sense

Juno provides the capability to sense overvoltage conditions in the main +HV bus voltage. A programmable threshold
set using the command SetDriveFaultParameter is compared to the value read from the drive DC bus supply via

the BusVoltage signal input, and if the value read exceeds the programmed threshold, an overvoltage fault occurs. To

read the value set, the command GetDriveFaultParameter is used.

An overvoltage fault will cause the following events:
*  Depending on how event processing has been set one or more modules may be disabled.
* The drive exception bit in the Event Status register becomes active.
* The overvoltage bit in the Drive Fault Status register is set.

To recover from this condition, the user should determine the reason for the fault and correct accordingly. It is always
the responsibility of the user to maintain safe operating conditions for the drive electronics. Once this has occurred,
the overvoltage bit of the Drive Fault Status register should be cleared using the ClearDriveFaultStatus command
and the drive exception bit of the Event Status register should be cleared using the ResetEventStatus command. The
normal operation of the control modules can then be restored using RestoreOperatingMode.

The instantaneous value of the overvoltage condition can be read using the command GetDriveStatus. If the
overvoltage fault condition is still occurring while the overvoltage bit of the Event Status register is being cleared, this

bit will immediately be set again, and the recovery sequence described above must be executed again.

Once programmed the temperature comparison function operates continuously. To disable it, a value of 32,767 should
be programmed. The drive supply voltage can be monitored using the GetBusVoltage command. It returns the

current supply voltage reading.
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11.3 Undervoltage Sense

Juno provides a capability very similar to the overvoltage sense except that it monitors undervoltage. To set the
programmable threshold the command SetDriveFaultStatus is used. This value is compared to the value read from
the BusVoltage signal, and if the value read is less than the programmed threshold, an undervoltage fault occurs. To read
the value set, the command GetDriveFaultStatus is used.

Threshold units, recovery procedure, and all other aspects of this feature are the same as for overvoltage sense except
that the bit status location in the Drive Fault Status register is different. And just as for overvoltage conditions, it is

the uset's responsibility to determine the setiousness of, and appropriate response to, an undervoltage condition.

11.4 Overcurrent Sense

Juno provides the capability to sense overcurrent conditions in both the supply and the return of the DC Bus. A
programmable threshold set using the command SetDriveFaultParameter is compared to the value read from the
DC Bus current supply via the BusCurrentSupply signal input, and if the value read exceeds the programmed threshold,

an overcurrent fault occurs. To read the value set, the command GetDriveFaultParameter is used.

The DC Bus return current is determined from Juno’s leg current sensor inputs. To set this comparison threshold the
SetDriveFaultParameter command is used and this value can be read back using GetDriveFaultParameter.

An overcurrent fault will cause the following events:
*  Depending on how event processing has been set one or more modules may be disabled.
* The drive exception sense bit in the Event Status register becomes active

To recover from this condition, the user should determine the reason for the fault and correct accordingly. It is always
the responsibility of the user to maintain safe operating conditions for the drive electronics. Once this has occurred,
the DriveException bit of the Event Status register should be cleared. This can be accomplished using
ResetEventStatus. The normal operation of the control modules can then be restored using
RestoreOperatingMode.

If the overcurrent fault condition is still occurring while the DriveException bit of the Event Status register is being

cleared, this bit will immediately be set again, and the recovery sequence described above must be executed again.

Once programmed the temperature comparison function operates continuously. To disable it, a value of 32,767 should

be programmed.

11.5 Drive Enable

Juno supports an Enable input signal that must be active for proper operation. This signal is useful for allowing external
hardware to indicate a fault to Juno and thereby automatically shut it down. The signal has an active low interpretation
which can not be changed by the SetSignalSense command.

If the Enable signal becomes inactive (goes high) the following events occur:
*  Depending on how event processing has been set one or more modules may be disabled.
* The disable bit in the Event Status register becomes active.

To recover from this condition the user should determine the reason for the enable becoming inactive, and correct

accordingly. Once this has occurred, the appropriate bit of the Event Status register should be cleared. This can be
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Figure 11-2:
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accomplished using ResetEventStatus. The normal operation of the control modules can then be restored using
RestoreOperatingMode.

If the Enable signal is still inactive while the disable or drive exception bit of the Event Status register is being cleared,

this bit will immediately be set again, and the recovery sequence must be executed again.

The status of the Enable signal can be read using the command GetSignalStatus.

11.6 Current Foldback

Juno supportts a current foldback feature, sometimes referred to as an I*t foldback, which can be used to protect the
drive output stage or motor windings from excessive curtent. I’t current foldback wotks by integrating, over time, the
difference of the square of the actual motor current and the square of the user-settable continuous current limit.

When the integrated value reaches a user-settable energy limit, Juno goes into current foldback. The default response
to this event is to cause the current loop and motor output modules to be disabled. However it is also possible to
program Juno to attempt to clamp the maximum current to the continuous current limit value. Note that Juno’s ability

to do so depends on a propetly functioning current loop.

Juno will stay in foldback until the integrator returns to zero. This is shown in Figure 11-2.

Continuous Integrated
current limit energy limit
exceeded 1 £exceeded
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Setting continuous current limit and energy limit to less than the maximum available from the amplifier circuitry is
useful if the required current limit is due to the motor, rather than to the drive electronics. Continuous Current Limit
and Energy Limit can be set using the command SetCurrentFoldback. The values set using this command can be
read back using GetCurrentFoldback.

The instantaneous state of current foldback (whether the foldback limit is active or not) is available in the Drive Status
register and can be read using the command GetDriveStatus. In addition, if a foldback event has occurred, this event
is recorded in the Event Status register and can be read back using GetEventStatus.
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Example

A particular motor has an allowed continuous current rating of 3 amps. In addition, this motor can sustain a temporary

current of 5 amps for 2 seconds.

In this example the continuons current limit would be set to 3 amps, and the energy limit would be set to:

Energy Limit = (peak current” - continuous current limit?) * time
Energy Limit = (5?A% - 3°A%) * 2 Sec
Energy Limit = 32A%Sec

Current foldback, when it occurs, may indicate a serious condition affecting motion stability, smoothness, and per- [ ]
formance. It is the responsibility of the user to determine the appropriate response to a current foldback event. l

11.6.1 Current Foldback in Voltage Mode

Atlas unit’s current foldback mechanism still operates when Atlas is in voltage mode (current loop disabled). When in

this mode, the I’t energy calculations and condition testing are identical as when Atlas is operating in current control

mode.

Nevertheless, when in voltage mode, there is an important operational difference. In particular, if the limit is exceeded,
rather than clamping the maximum current output to the programmable maximum continuous current limit setting,

the power stage module is disabled or enters a braking state, thereby halting further motor output.

11.7 Shunt Signal

As shown in Figure 11-1 Juno can control a shunt PWM output, which in turn typically drives a MOSFET or IGBT
switch which connects the HV bus voltage to the DC bus ground via a power resistor, thereby lowering the DC bus
voltage. The shunt function can be used with DC Brush or Brushless DC motors but is typically not used with step
motors. The shunt is useful for controlling excessive DC bus voltage particulatly if the servo motor is decelerating

rapidly resulting in back-EMF generation.

The shunt functions by continually comparing the DC bus voltage, as presented at the BusVoltage signal, to a user
programmable threshold. If the DC bus voltage exceeds the comparison threshold the Shunt signal outputs a PWM
waveform at a user programmable duty cycle. This PWM frequency is equal to the motor drive PWM frequency. Once
active, shunt PWM output will stop when the DC bus drops to 2.5% below the threshold comparison value.

Once programmed, the shunt comparison function operates continuously. To disable it, a value of 32,767 should be
programmed. The shunt function is not active when motor output is not enabled (the active operating mode output
bit is not set). Similar to the motor amplifier PWM outputs, the signal sense of the shunt PWM output signal can be
user programmed using the SetPWMDrive command. The default value is active high.

For additional information on the shunt function refer to the MC78713 Electrical Specifications.

Juno Velocity & Torque Control IC User Guide 83




_A Amplifier Safety & DC Bus Monitoring

This page intentionally left blank.

84 Juno Velocity & Torque Control IC User Guide




12.Power-up, Configuration
Storage & NVRAM

In This Chapter

Power-up

Initialization Execution Control
Initialization Monitoring
Non-Volatile NVRAM) Storage
» NVRAM Setup in the Production Application

12.1 Power-up

After receiving stable power at the Vee pins Juno begins its initialization sequence. In a power-up where no user-
provided configuration settings have been stored this takes approximately 250 mSec. At the end of this sequence all
parameters are at their default values, and both the current loop module and the power stage module are disabled. At

this point Juno is ready to receive host commands and begin operation.

Juno also supports the ability to store configuration settings that are applied during the power up sequence. For this
purpose, Juno supports a 1,024 word memory that is non-volatile NVRAM), meaning the data stored will be available
even after power to the Juno IC is removed.

The power-up initialization information stored in the NVRAM takes the form of host packets, however rather than
being sent via a host communication port, these packets are stored in memory. If the non-volatile memory has been
loaded with configuration information the power-up sequence detects this and begins executing these commands. Note
that processing stored commands may increase the overall initialization time depending on the command sequence
stored.

12.2 Initialization Execution Control

To make the initialization sequence as flexible as possible Juno provides a facility to control execution of the initialization
commands stored in NVRAM. Command execution can be suspended for a specific period of time, or until various
internal or external conditions are satisfied. This is useful for coordinating Juno IC startup with external processes on
the user’s controller board, to synchronize completion of Juno motor initializing sequences such as pulse phase

initialization, or to execute simple motion sequences prior to normal operation.

This facility is executed via the ExecutionControl command. After calling this command further initialization
command processing is suspended until the specified execution control condition is satisfied or until a user-specified

timeout interval elapses.
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12.2.1 Settable Parameters

The following table indicates the parameters that are specified with the ExecutionControl command:

Parameter Description

Condition This field selects the execution control condition. The options are delay a specified amount of
time, compare against the Event Status register, compare against the Activity Status register, com-
pare against the Drive Status register, or compare against the Signal Status register.

Delay time This field is specified if the condition is set to delay. The delay time is a 32-bit number that holds
the number of cycle times to delay.

Compare masks This field is specified if a compare condition is selected. Two |6-bit numbers are specified repre-
senting a compare mask and a compare sense value.

Timeout Specifies the maximum amount of time to wait for the condition to become true. A value of zero
means never time out. If the condition times out an error is raised, the motor output module is
disabled, and initialization halts.

Refer to the Juno Velocity & Torque Control IC Programming Reference for the exact encoding of the ExecutionControl

command.

12.2.1.1 Compare Masks

Juno allows a broad range of internal or external conditions to be used for execution control during initialization. This
allows initialization command sequences such as “Start the pulse phase initialization and wait till it completes before
continuing,” “Rotate the motor after HallA signal goes high,” and “Change the profile target velocity once the profile
velocity has reached zero.”

These execution control comparisons are specified via a 16-bit mask value and a 16-bit sense value. The 16-bit mask
value contains a 1 in each bit position of the corresponding specified status register that will be compared against, and
a 0 for bits that will not be compared. The 16-bit sense value contains the value for each bit of the status register that

will be compared.
Example

A user wants to suspend execution for up to 30 seconds during initialization until the Index and AtRest pin signals are
high (1) and low (0) respectively. Since these signal states are held in the Signal Status register at bit positions 2 and 7

the user sets the execution condition for comparison of the Signal Status register, a compare mask value of 2%+ 27 =

36 and a compare value would be 22 + 07 = 4. The user also specifies a timeout value of 30 seconds.

12.3 Initialization Monitoring

To determine if initialization is complete a flag indicating this in the Drive Status register is set. Refer to Section 8.2.2

"Activity Status Register" for more information. For more information on how the initialization commands are stored
into NVRAM see Section 12.4, "Non-Volatile NVRAM) Storage." For detailed electrical information on Juno reset
and powerup refer to the MC787113 Electrical Specifications.

If there are errors in the stored command sequence then an instruction error will be set so that the error can later be

diagnosed. Juno will abort initialization if it detects any error while processing commands.

The host controller may poll the Drive Status register to determine when initialization is complete. If an error is
detected the host controller can send a GetlnstructionError to diagnose the nature of the erroneous command

processed during initialization.
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12.4 Non-Volatile (NVRAM) Storage

A primary purpose of the NVRAM is to allow Juno initialization information to be stored so that upon power up it
can be automatically loaded rather than requiring an external controller to perform this function. In addition the
NVRAM can be used for other functions such as labeling the stored initialization sequence, or for general purpose
user-defined storage.

All data stored in the Juno NVRAM utilizes a data format known as PMD Structured data Format (PSF). Users who
rely only on PMD’s Pro-Motion software package to communicate with Juno and store and retrieve initialization

parameters need not concern themselves with the details of PSE. Users who want to address the NVRAM from their
own software, or who want to create their own user-defined storage on the Juno NVRAM will require the PSF format

details, which are documented in the Juno Velocity & Torgue Control 1C Programming Reference.

The following section describes how writing and reading to the NVRAM memory space is accomplished.

12.4.1 Writing to NVRAM

There are significant restrictions to writing to Juno’s NVRAM area. In particular it is not possible to erase and rewrite
selected sections of the memory space. Only the sequence described in this section can be used to write memory into
the user NVRAM space.

Data stored into the NVRAM area must follow PSF (PMD Structured data Format). Failure to do so may result in
unexpected behavior of the Juno.

The following sequence is used to store command initialization data or other data to the non-volatile memory area:

1 Send a NVRAM command with an argument of NVRAMMode. Sending this command places Juno in a special
mode allowing it to store memory into the NVRAM. Before proceeding the host controller should delay 1

second or more.

2 Send a NVRAM command with an argument of EraseNVRAM. This command will erase the entite NVRAM

memory area. Before proceeding the host controller should delay four seconds or more.

3 For each 16-bit word of data that is to be written into the NVRAM area the command NVRAM with an
argument of Write is sent, along with the data word to be written. After each word is written Juno increments

an internal pointer so that subsequent data words are automatically stored in the correct location.

4 Once all data is successfully written the host controller should send a Reset command, which will cause Juno
to reboot and execute a power up sequence. Note that this power-up sequence will include processing the

stored data sent using the above sequence.

If an error occurs when processing NVRAM the instruction error event bit will be set and the GetlInstructionError

command may be used to read the error code.

It is not possible to write to the NVRAM area using the buffer commands. The procedure outlined in Sec-
tion 12.4.1, "Writing to NVRAM" must be used to write data to the NVRAM area.
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12.4.2 Reading fromm NVRAM

If desired, it is possible to directly read the NVRAM memory area using buffer commands. See Section 8.5.7, "Buffer

Commands" for mote information on buffer processing.

For convenience the NVRAM buffer is pre-defined with an ID# of 1. The ReadBuffer16 command can be used to
read all or part of the NVRAM space.

12.5 NVRAM Setup in the Production
Application

When a user programmable microprocessor is located on the user’s control board the most common approach for
configuring Juno for operation is for the microprocessor to send a sequence of host commands to Juno, thereby

initializing and configuring it for operations.

If there is no host microprocessor however and Juno’s direct input control modes are being used, Juno’s NVRAM

must be loaded with this command sequence so that it can initialize and configure itself automatically during powerup.

For more information refer to Section 2.9, "Juno ICs in the Production Application."
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In This Chapter
Host Communications
Host Commands
Serial Communications
Controller Area Network (CAN)

SPI (Serial Peripheral Interface) Communications

13.1 Host Communications

By communicating via commands the host can control the behavior of the motion system as desired while monitoring
the status of the Juno IC and the motor. Juno ICs support several methods of host communication including point-to-
point and multi-drop asynchronous serial, CANbus 2.0, and SPI (Serial Peripheral Interface). However not all Juno ICs
support all host communications modes. This is shown in the table below:

Serial Serial
Juno IC Type P/Ns Point-to-point Multi-drop CANbus SPI*
Velocity control MC71113, MC73113, MC78113 v v v v
Torque control MC71112, MC71112N, MC73112, v
MC73112N
Step motor control  MC74113, MC741 13N, MC751 13, v
MC75113N

*while Juno torque control and step motor control 1Cs do not support SPI for host communications, they do provide SPI input for command
value input or for sensor reading input.

13.2 Host Commands

All communications to and from the chipset, whether serial, CANbus, or SPI, are in the form of packets. A packet is a
sequence of transfers to and from the host, resulting in a Juno action or data transfer. Packets may consist of a command
with no data (dataless command), a command with associated data that are written to the chipset (write command), or

a command with associated data that are read from the chipset (read command).

Every command sent by the host has a structured format that does not change, even if the amount of data and nature
of the command vary. Each command has an instruction word (16 bits) that identifies the command. There may be zero
or more words of data associated with the command that the host writes to the IC. This is followed by zero or more
words of data that the host reads from the IC. The type of command determines whether there are data written to Juno
and to the host.

Most commands with associated data (read or write) have one, two, or three words of data. See the Juno 1Velocity & Torgue

Control IC Programmer's Reference for more information on the length of specific commands. If a read or a write command
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Figure 13-1:
Typical Data
Frame Format

20

has two words of associated data (a 32-bit quantity), the high word is loaded/read first, and the low word is loaded/
read second.

Design Note: While some users will develop their own low-level libraries for interfacing to a Juno IC, PMD’s higher-
level language C-Motion, provides convenient C-language APIs (Application Programmmer Interface) for all Juno
commands.

13.3 Serial Communications

All Juno ICs provide an asynchronous serial connection. This serial port may be configured to operate at baud rates
ranging from 1200 baud to 460,800 baud and may be used in point-to-point or multi-drop mode.

13.3.1 Configuration

The following table shows the Juno default serial settings:

Communications Mode Default Value
point-to-point serial 57.6K, | stop bit, no parity.
multi-drop serial 57.6K, | stop bit, no parity, point-to-point mode.

The basic unit of serial data transfer (both transmit and receive) is the asynchronous frame. Each frame of data consists
of the following components.

*  One start bit.
* FEight data bits.
* An optional even/odd patity bit.

*  One or two stop bits. This data frame format is shown in the following figure.

I
|Start |LSB| 2 | 3 | 4 | 5 | 6 | 7 |MSB|Parity|Stop

13.3.2 Command Format

The command format that is used to communicate between the host and Juno consists of a command packet sent by
the host processor, followed by a response packet sent by Juno. The host must wait for, receive, and decode the
response packet.

Command packets sent by the host contain the following fields.

Field Byte# Description

Address | One byte identifying the Juno IC to which the command packet is being sent. This
field should always be zero in point-to-point mode.

Checksum 2 One byte value used to validate packet data. See the table in Section 13.3.4, "Check-

sums" for detailed information.
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Field Byte# Description

Instruction code  3-4 Two byte instruction, sent upper byte (axis number) first. The command codes are
detailed in the Juno Velocity & Torque Control IC Programming Reference.

Data 5 Zero to six bytes of data, sent most significant byte (MSB) first. See the individual
command descriptions for details on data required for each command.

In response to the command packet, Juno will respond with a packet in the following format.

Field Byte# Description

Address (h* One byte identifying the Juno IC sending the response. Present in multi-drop mode only.

Status 1 (2) Zero if the command was completed correctly; otherwise, an error code specifying the
nature of the error. See Section 13.3.3, "Instruction Errors" for more information.

Checksum 2(3) A one-byte checksum value used to validate the packet's integrity. See details in the pre-
ceding table.

Data 34) Zero to six bytes of data. No data will be sent if an error occurred in the command (i.e.

the status byte was non-zero). If no error occurred, then the number of bytes of data
returned would depend on the command to which Juno was responding. Data are always
sent MSB first.

* Note that the address byte is only present in the response packet when in multi-drop mode. In this case, its is also

included in the checksum calculation.

13.3.3 Instruction Errors

There are a number of checks made by the Juno IC on commands it receives. These checks improve safety of the
motion system by eliminating some obviously incorrect command data values. All such checks associated with host
commands are referred to as instruction errors. The status byte in the response packet will contain one of the error

codes.

13.3.4 Checksums

Both command and response packets contain a checksum byte. The checksum is used to detect transmission errors,
and allows Juno to identify and reject packets that have been corrupted during transmission or were not propetly

formed.

Checksums are mandatory when using serial communications. Any command packets sent to Juno containing invalid

checksums will not be processed and will result in a data packet being returned containing an error status code.

The serial checksum is calculated by summing all bytes in the packet (not including the checksum) and negating (i.c.,
taking the two’s complement of) the result. The lower eight bits of this value are used as the checksum. To check for
a valid checksum, all bytes of a packet should be summed (including the checksum byte), and if the lower eight bits of

the result are zero, then the checksum is valid.
Example

If a command packet is sent to address 3, containing command 077h SetMotorCommand with the one-word data
value 1234h, then the checksum will be calculated by summing all bytes of the command packet (03h + 77h + 12h +
34h = C0) and negating this to find the checksum value (40h). On receipt, Juno will sum all bytes of the packet, and
if the lower eight bits of the result are zero, then it will accept the packet (03h + 040h + 77h + 12h + 34h = 100h).

13.3.56 Transmission Protocols

The Juno ICs support the ability to have more than one Juno IC on a serial bus, thereby allowing a chain, or network

of ICs, to communicate on the same serial hardware signals.
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There are two methods supported by the serial port to resolve timing problems, transmission conflicts, and other
issues that may occur during serial operations. These are point-to-point (used when there is only one device connected
to the serial port) and multi-drop idle-line mode (used when there are multiple devices on the serial bus). The following
sections describe these transmission protocols.

13.3.6 Point-to-Point Mode

Point-to-point serial mode is intended to be used when there is a direct serial connection between one host and one
Juno IC. In this mode, the address byte in the command packet is not used by Juno IC (except in the calculation of
the checksum), and Juno responds to all commands sent by the host.

When in point-to-point mode, there are no timing requirements on the data transmitted within a packet. The amount
of data contained in a command packet is determined by the command code in the packet. Each command code has
a specific amount of data associated with it. When Juno receives a command code, it waits for all data bytes to be

received before processing the command. The amount of data returned from any command is also determined by the
command code. After processing a command, Juno will respond with a data packet of the necessary length. No address

byte is sent with this response packet.

When running in point-to-point mode, there is no direct way for Juno to determine the beginning of a new command
packet, except by context. Therefore, it is important for the host to remain synchronized with Juno when sending and
receiving data. To ensure that the processors remain synchronized, it is recommended that the host processor

implement a time limit when waiting for data packets to be sent by Juno. The suggested minimum timeout period is
the amount of time required to send one byte at the selected baud rate plus one millisecond. For example, at 9600 baud
each bit takes 1/9600 seconds to transfer, and a typical byte consists of 8 data bits, 1 start bit, and 1 stop bit. Therefore,

one byte takes just over 1 millisecond, and the recommended minimum timeout is 2 milliseconds.

If the timeout period elapses between bytes of received data while the host is waiting on a data packet, then the host
should assume that it is out of synchronization with Juno. To resynchronize, the host should send a byte containing
zero data and wait for a data packet to be received. This process should be repeated until a data packet is received from

Juno; at which point the two processors will be synchronized.

13.3.7 Multi-drop Idle-line Mode

This multi-drop protocol is intended to be used on a serial bus in which a single host processor communicates with
multiple Juno ICs (or other subordinate devices). In this mode, the address byte that starts a command packet is used
to indicate the device for which the packet is intended. Only the addressed device will respond to the packet.

When the idle-line mode is used, Juno imposes tight timing requirements on the data sent as part of a command
packet. In this mode, Juno will interpret the first byte received after an idle period as the start of a new packet. Any
data already received will be discarded.

The timeout period is equal to the time required to send ten bits of serial data at the configured baud rate—for
example, roughly 1 millisecond at 9600 baud. If a delay of this length occurs between bytes of a command packet, then
the bytes already received will be discarded, and the first character received after the delay will be interpreted as the
address byte of a new packet.

Once Juno receives an address byte and a command code, it waits for all data bytes to be received before processing
the command. The amount of data returned from any command is also determined by the command code. After
processing a command, Juno will respond with a data packet of the necessary length. In multi-drop mode, the first
byte of every response packet contains the address of the responding Juno IC. This prevents other devices on the

network from interpreting the response as a command sent to them.

Note that this multi-drop protocol may also be used when the host and Juno IC are wired in a point-to-point

configuration, as long as the host always transmits the correct address byte at the start of a packet and follows any
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additional rules for the selected protocol. This mode of operation allows the host to ensure that it will remain

synchronized with the Juno IC without implementing the timeout and re-synch procedure previously outlined.

13.4 Controller Area Network (CAN)

CAN is a serial bus system especially suited for networking “intelligent” devices as well as sensors and actuators within

a system ot sub-system.

13.4.1 Overview

All Juno ICs provide a CAN 2.0B network and will coexist (but not communicate) with CANopen nodes on that
network. Juno uses CAN to receive commands, send responses, and (optionally) send asynchronous event

notifications. Each message type has an address, as shown in the following table.

Message Type CAN Address
Command received 0x600 + nodelD
Command response 0x580 + nodelD
Event notification 0x180 + nodelD

CAN nodes communicate via messages. Each message may carry a data payload of up to 8 bytes. The CAN interface
layer automatically corrects transmission errors. Unlike the serial protocols, a checksum is not a part of the Juno’s CAN

interface protocol.

13.4.2 Message Format

Messages are transmitted and received using the standard format identifier length of 11 bits. All network messages that
use the extended format 29-bit identifier are ignored by Juno. Commands have varying data lengths; see the Juno
Velocity & Torque Control 1C Programming Reference for the data formats of particular commands. Correspondingly, in the

following table, not all of the data word bytes will always be present depending on the command being processed.

The corresponding byte sequences in the CAN protocol for the three message types are described in the following
tables.

Command Received

Message Corresponding
data byte parallel byte

I Command word, high byte

Command word, low byte

|St

data word, high byte

I** data word, low byte

2" data word, high byte

2" data word, low byte

3™ data word, high byte

0| N| o~ L A WD

3" data word, low byte

Command Response

Message
data byte

Corresponding
parallel byte

Reserved (always zero)
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Command Response

Message Corresponding
data byte parallel byte

2 Instruction status code
3 It data word, high byte
4 I** data word, low byte
5 2" data word, high byte
6 2" data word, low byte
7 3™ data word, high byte
8 3" data word, low byte

The first word in a response will contain a value of zero in the upper byte, and the lower byte will contain a value that
will also be zero in a no-error condition, but will be non-zero if an error occurred while processing the instruction.

(See Section 13.3.3, "Instruction Errors" for mote information.) The byte following the status byte will be the high

byte of the 1st data word, followed by the low byte of the 1st data word and continuing as shown in the preceding
table. The actual number of bytes returned is determined by the instruction that was issued; see the Juno Velocity &
Torgue Control 1C Programming Reference for the data lengths and formats of each command.

Event Notification

Message

data byte Data Interpretation

| zero

2 zero

3 Event Status register value, high byte
4 Event Status register value, low byte

The first and second bytes in a notification message will contain a value of zero. The 3rd and 4th bytes are the high
and low byte of the Event Status register from the notifying axis.

13.4.3 Configuring the CAN Interface

Juno CAN interface may be configured via the command SetCANMode. This command is used to set the CAN
nodelD of a particular Juno IC (0-127), as well as the transmission rate of the connected CAN network. The

supported transmission rates are as follows:

SetCanMode

Encoding CAN Transmission Rate (bps)
0 1,000,000

| reserved

2 500,000

3 250,000

4 125,000

5 50,000

6 20,000

7 10,000

13.4.4 CAN Event Notification

When communicating via the CAN interface, Juno may (optionally) send messages when selected bits in the Event

Status register are set active. (See Section 8.2.1, "Event Status Register" for more information.) These messages ate
sent with a CAN address of 0x180 + nodelD.
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This CAN notification facility is controlled with the command SetInterruptMask. For each on bit in the notify mask,
a CAN message will be generated whenever the corresponding bit in the Event Status register becomes 1.

13.5 SPI (Serial Peripheral Interface)
Communications

Juno ICs support an SPI interface for communication with a host microprocessor or other controller. Note that this

interface is intended for on-board interconnections only. SPI should not be used for off-board communication.

The Juno SPI interface utilizes three digital input pins HostSPIEnable, HostSPIClock and HostSPIRcy and two digital
output pins HostSPLXmt, and HostSPIStatus. These signals represent the standard SPI enable, chip select, clock, and
data functions, along with a protocol packet processing status indicator. When used with SPI host communications

Juno acts as an SPI slave, and the host processor acts as an SPI master.

[ ]
The SPI port may also be used for direct input of torque, velocity, or outerloop quantities. For informaiton on l
operating the SPI port in direct input mode refer to Section 14.3, "Direct Input SPI (Serial Peripheral Interface).".
13.56.1 SPI Protocol, Command Send
Each overall host SPI data exchange consists of the host asserting HoszSPIEnable, the host sending two or more 16-
bit data words, and the host de-asserting HostSPIEnabie.
SPI commands that do not include data to send to Juno (dataless commands) consist of two transmitted 16-bit words,
commands that include one word of data consist of three transmitted 16 bit words, etc.
Host Controller Word 1 i .
ost Controller Wor r1 | A | Axis | Opcode Figure 13-2:
Juno Word 1 Return word (may contain Os or 1s) SPI Command
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Send Packet
Sequence
Host Controller Word 2 r2 Wcehk
Juno Word 2 Return word (may contain Os or 1s)

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Host Controller Word 3 Argument 1

Juno Word 3

Return word (may contain Os or 1s)

Host Controller Word 4 Argument 2

Juno Word 4

Return word (may contain Os or 1s)
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

This is shown in Figure 13-2 which shows the overall packets sequence and format for SPI command write

communications. The following table details the content of these packets:

Field Bit Name Description
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Opcode 0-7 Opcode Contains the 8 bit command opcode

ri 8-15 Reserved Reserved, must contain 0.

Wchk 0-7 Write check-  Contains the logical negation of an 8-bit ones complement checksum

sum computed over all bits in the command packet except for the check-

sum field, and a seed of OxAA. If the checksum received by Juno is
incorrect (does not equal 0xff), the command will not be executed
and will returns a checksum error code during the next data
exchange.

r2 8-15 Reserved Reserved, must contain 0.

The additional word writes argument1, argument2, shown in Figure 13-2 contain data (if any) associated with the

command being sent to Juno. For example if the command SetMotorCommand is being sent, then a single 16-bit

data word, consisting of the programmed command value is transmitted in argument1. Only the required number of

argument data words should be sent.

13.5.2 SPI Protocol, Commmand Response

After receiving a command with a valid checksum and the appropriate number of argument words Juno will process

the command. After command processing is complete, Juno will drive the HostSPIStatus signal high. The host reads

this signal state change, and then initiates an SPI exchange to retrieve the command status as well as any return data

words that may have been associated with the command that was sent by the host.

Note that the host should begin polling HostSPIS7atus only after de-asserting HostSPIEnable. Polling earlier may result
in incorrect interpretation of the HoszSPIS tatus signal.

Host Controller Word 1
Juno Word 1

Host Controller Word 2
Juno Word 2

Host Controller Word 3
Juno Word 3

Rchk

Status

15 14 13 12 11

15 14 13 12 11

15 14 13 12 11

109 8 7 6 5 4 3 2 10

10 9 8

10 9 8

Figure 13-3 shows the packet format to receive a command response. In all cases the host sends 16-bit data words

consisting of zeroes, while simultaneously retrieving data from Juno. The following table describes the fields of this

returned data:

Field Bit Name Description
Status 0-7 Command  This fields contains an 8-bit word which provides a status of the processed com-
Status mand. Positive values indicate that command processing occurred normally with
the returned value holding the number of |6-bit words to be returned. Negative
values contain an error code, and indicate that command processing did not occur
normally.
Rchk 8-15 Response Contains the logical negation of an 8-bit ones complement checksum computed
checksum over all bits of the return packet except the checksum, and a seed of OxAA. It is

not required, although highly recommended, that the host confirm that the return
checksum is correct (totals to OxFF).
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The additional word reads responsel, response2, shown in Figure 13-3 contain data (if any) associated with the
command that was sent to Juno. For example if the command GetMotorCommand was sent, then a single 16-bit data

word, consisting of the current value of Juno’s motor command register, will be returned.

If the host attempts to retrieve command status before it is ready an error will occur. The signal HoszSPLStatus l
should always be used to synchronize command status checks.
Even if no data is being returned by Juno, the host must retrieve the command response. Failure to do so will l

result in SPI communications becoming desynchronized.

13.5.3 Configuring Host SPI

There are no user-configurable parameters that need to be set for the Host SPI interface. For more information on
host SPI interface timing and signalling refer to the MC78713 Electrical Specifications.
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In This Chapter
Analog Signal Input
Analog Signal Calibration
Direct Input SPI (Serial Peripheral Interface)

14.1 Analog Signal Input

Juno provides direct analog signal input in conjunction with a number of its control related featutes. Analog signals ate
input in a voltage range of 0.0V to 3.3V and then converted via an internal ADC (analog to digital converter) into a
digital word.

Analog signal input values can be read via the ReadAnalog command by specifying the analog channel that is being read.
The following table summarizes the Juno analog inputs and the corresponding analog channel:

Juno Signal Channel # Description

CurrentA 0 Switching amplifier A leg current feedback input
CurrentB | Switching amplifier B leg current feedback input
CurrentC 2 Switching amplifier C leg current feedback input
CurrentD 3 Switching amplifier D leg current feedback input
Temperature 4 Temperature sensor input

BusCurrentSupply 5 DC Bus supply side current input

BusVoltage 6 DC Bus voltage input

AnalogCmd 7 Direct analog velocity or torque command input
Tachometer 8 Tachometer velocity or measured outer loop value input

The MC78113 Electrical Specifications has detailed information on how to connect to Juno’s analog input signals,

recommended signal processing circuitry, and extensive example schematics for various motion control applications.

14.1.1 CurrentA-D Input & Current Scaling

The CurrentA-D analog inputs are used with Juno’s current control module. Depending on the motor type that is being
driven (Brushless DC, DC Brush, or step motor) as few as two or up to all four of these signals are used.

The incoming voltage represents a bipolar leg current reading from 0.0V to 3.3V, with 0.0 representing the maximum
negative reading, 1.65V representing a zero current reading, and 3.3V representing the maximum positive current
reading.

Although Juno converts analog signals to digital via a 12 bit A/D, the numerical equivalent of the above input commands
are scaled so that the maximum negative current feedback has a value of -20,480, a zero current has a value of 0, and the
maximum positive current reading has a value of +20,480.

To read the raw analog value at the CurrentA-D pins the command ReadAnalog is used. The result is an unsigned number
from 0 to 65,555. With the current loop enabled, to read the value used for current loop processing the GetFOCValue
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command is used. The difference between these two values is that the loop value has the calibration offset values

applied.
Example

Juno’s current control module is used in an application to drive Brushless DC motors with up to 7.5 amps of peak
current and 4 amps continuous. To provide the needed range margin (~30% above peak) the current sense resistors
and associated analog processing circuitry are arranged to provide a full scale range of +/-10.0 amps, presenting a
voltage of 0.0V for a reading of -10.0A, 1.65Vfor 0.0A, and 3.3V for +10.0A at the CurrentA-D pins.

With the current measurement circuitry scaled in this way the conversion from a measured current in amps to the raw
numerical value read using the GetFOCValue command is value = I * 20,480 / 10.0A, and the conversion from
measured current in amps to volts at the CurrentA-D pin is V = 1.65V + 1 * 1.65V / 10.0A.

To determine the numerical value for user specified current commands (provided via analog input, direct input SPI,
ot with commands such as SetCurrent and SetMotorCommand) we multiply by .625 / .50 reflecting the scaling
within Juno’s current loop. So given a desired current in amps the command numerical value is value = 1 * 1.25 * 32,767
/ 10.0A, ot value = 1* 40,959 / 10.0A and conversely, given a commanded numerical value the equivalent commanded
current in amps is I = value * 10.0A * .80 / 32,767, or I = value * 10.0A /20,480.

For information on calibrating the CurrentA-D and other analog inputs refer to Section 14.2, "Analog Signal
Calibration." For scaling, filtering, and other important electrical details associated with the CurrentA-D inputs refer to
the MC78113 Electrical Specifications.

Offset calibration of the analog CurrentA-D signals as well as (if used) the AnalogCmd and Tachometer signals is
recommended for best motion performance.

14.1.2 AnalogCmd With Velocity And Current Loop

The AnalogCmd signal can be used to command a velocity or current (torque) command for the velocity loop or current
loop modules. As for the CurrentA-D signals the voltage at the pin represents a bipolar command with 0.0V, 1.65V, and
3.3V representing the maximum negative, zero, and maximum positive commands respectively and with equivalent
numerical values of -32,768, 0, and +32,767 respectively.

To read the raw analog value at the AnalogCmd signal the command ReadAnalog is used. With AnalogCmd sclected
as the loop command source, to read the value used as the loop command value the command GetLoopValue is used.

The difference between these two values is that the loop value has the calibration offset values applied.

Example 1

Following the current loop scaling example provided in Section 14.1.1, "CurrentA-D Input & Current Scaling" a
desited numerical current command value for a desired current in amps is calculated via: value = I * 1.25 * 32,767 /
10A. As noted above the AnalogCmd pin voltages will convert to numerical values over the range of -32,767 to +32,767
from lowest to highest command voltage. Therefore the expression for the current command in amps given an
AnalogCmd signal voltage Vis: I = (V - 1.65V) * 8.0A / 1.65V and conversely given a desired cutrent in amps the
command signal voltage will be V = 1.65V + I * 1.65V / 8.0A. This means a voltage of 0.0V at AnalogCmd will
command a current of -8.0A, a voltage of 1.65Vwill command 0.0A, and 3.3Vwill command +8.0A.

Note that those commands are actually outside the application range of +/- 7.5A and so for this application the
smallest AnalogCmd voltage command should be 1.65V + -7.5A * 1.65V /8.0A = .103V (which cortesponds to a
numetical value of -7.5A * 32,767 / 8.0A = -30,719) and the latgest voltage command should be 1.65V + 7.5A * 1.65V
/ 8.0A= 3.197V (which cottesponds to a numerical value of +7.5A *32,767 / 8.0A = +30,719).

Example 2
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Following the velocity loop scaling example provided in Section 14.1.5, "Tachometer Signal With Position/Outer

Loop" the AnalogCmd signal scaling will be the same as the velocity sense scaling, with 0.0V commanding a velocity
of -6,500 RPM, 1.65V commanding 0 RPM, and 3.3V commanding +6,500 RPM. Note that those commands are
actually outside the application range of +/-4,500 RPM and so for this application the smallest command should be
1.65V + -4,500 RPM * 1.65V / 6,500 RPM = .508V (which corresponds to a numerical value of -4,500 RPM * 32,767
/ 6,500 RPM = -22,684) and the latrgest command should be 1.65V + 4,500 RPM * 1.65V / 6,500 RPM = 2.792V
(which corresponds to a numerical value of +4,500 RPM * 32,767 / 6,500 RPM = +22,684).

14.1.3 AnalogCmd Signal With Position/Outer Loop

The AnalogCmd signal can also be used to command a pressure, flow rate, or other outer loop quantity value. In this
mode the analog command interpretation is slightly different. Although voltage values of 0.0V, 1.65V, and 3.3V still
generate numerical command values of -32,768, 0, and +32,767 respectively, the actual command outer loop quantity

itself may or may not have a negative value depending on the nature of the outer loop measurement.

The AnalogCmd interpretation of voltages of 0.0V, 1.65V, and 3.3V therefore changes to: the smallest commandable
value, the midpoint commandable value, and the largest commandable value. How the analog command value relates
to the actual outer loop quantity is determined by the measurement feedback. The following example illustrates this.

Example

Juno’s outer loop controller is used in an application to precisely control air pressure within a process chamber from
650 to 1,250 mbar. To provide the needed range margin (30% or so) the feedback pressure sensor is set up to have a
scale of 500 mbar to 1,500 mbar, presenting a voltage of 0.0V for a reading of 500 mbar, 1.65Vfor 1,000 mbar, and
3.3Vfor 1,500 mbar. With the pressure reading analog circuitry scaled in this way the conversion of the numerical
command to pressure is therefore P in mbar = 1,000 + 500 * value / (32,767), and the conversion of pressure to volts
is V.= 3.3V * (P-500) / 1,000.

With the feedback scaling now established the AnalogCmd signal scaling will be the same with 0.0V commanding a
pressure of 500 mbar, 1.65V commanding 1,000 mbar, and 3.3V commanding 1,500 mbar. Note that those commands
are actually outside the application range of 650 mbar to 1,250 mbar and so for this application the smallest command
presented at AnalogCmd should be 3.3V * (650 mbat - 500) / 1000 = .495 V, and the largest command should be 3.3V
* (1,250 mbar - 500) / 1000 = 2.48 V.

14.1.4 Tachometer Signal With Velocity Loop

The Tachometer signal can be used to provide motor velocity feedback for the velocity loop. Unlike the CurrentA-D and
AnalogCmd signals the polarity of the Tachometer signal may be specified, meaning Juno can be programmed to handle

feedback signals that increase in voltage with increases in value as well as decrease in voltage with increases in value.

To select the Tachometer signal along with its polarity as the feedback source the SetLoop command is used. To read
the selected value back the GetLoop command is used. For a positive polarity setting incoming voltages of 0.0V, 1.65V,
and 3.3V represent the maximum negative, zero, and maximum positive velocity readings respectively. For a negative
polarity setting incoming voltages of 0.0V, 1.65V, and 3.3V represent the maximum positive, zero, and maximum

negative velocity readings respectively.
Example

Juno’s velocity control module is used in an application with a tachometer to drive a DC Brush motor at up to 4,500
RPM (revolutions per minute). To provide the needed range margin (~30% above peak expected speed) the
tachometer and associated analog processing circuitry are arranged to provide a full scale range of +/-6,500 RPM,
presenting a voltage of 0.0V for a reading of -6,500 RPM, 1.65Vfor 0 RPM, and 3.3Vfor +6,500 RPM at the Tachometer

pin.
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With the velocity measurement circuitry scaled in this way the conversion of the numerical command to velocity (V)
in RPM is V = value * 6,500 RPM / 32,767, the conversion from a desired velocity in RPM to the numerical value is
value = V * 32,767 / 6,500 RPM, and the conversion from velocity (Vel) to volts at the Tachometer pin is V = 1.65V
+ Vel * 1.65V / 6,500 RPM.

To read the raw analog value at the Tachometer signal the command ReadAnalog is used. The values read back are not
altered by the polarity setting described above. With Tachometer selected as the loop feedback source to read the loop
feedback value (which includes the polarity adjustment as well as offset calibration) the command GetLoopValue is

used.

14.1.5 Tachometer Signal With Position/Outer Loop

As was the case for the AnalogCmd signal, the Tachometer signal, when used to provide the outer loop measurement,
should be interpreted such that 0.0V, 1.65V, and 3.3Vrepresent the smallest measurable value, the midpoint of

measurable values, and the largest measurable value.

Refer to Section 14.1.3, "AnalogCmd Signal With Position/Outer Loop" for a complete example of input scaling and

numerical value interpretation for position/outer loop measurement.

14.1.6 Temperature, BusCurrentSupply, and
BusVoltage Signals

These analog input signals ate used with Juno’s DC Bus/amplifier related safety check features. Similar to other analog
inputs they expect input voltages in the range of 0.0V to 3.3V. Unlike these other signals however these signals are

unipolar, encoding only the magnitude of the measured quantity.

Although the mechanism for selecting the polarity interpretation is different than for the Tachometer signal, the
Temperature signal provides a settable polarity so that both temperatute increasing/voltage increasing and temperature
increasing/voltage decreasing sensor types can be accommodated. The BusCurrentSupply and BusVoltage signals always
expect positive encoding, such that higher voltages encode higher current or DC bus voltage readings.

For more information on the functioning of these signals refer to Chapter 11, Amplifier Safety & DC Bus Monitoring, as
well as to the MC78713 Electrical Specifications.

14.2 Analog Signal Calibration

After integration into a particular PCB (printed circuit board), for best performance, it is generally recommended that
if used, the CurrentA-D, AnalogCmd, and Tachometer signal analog input offsets be calibrated so that their zero value

readings are as close to 1.65V as possible.

Whether or not calibration is needed in a particular application depends on the external analog signal processing
circuitry used and the extent to which the absolute best motion performance, particularly motor smoothness and
quietness, is important. Higher precision external circuitry or use of external offsetting circuitry may obviate the need
for internal calibration. Conversely Juno’s internal analog offset calibration procedure may allow less expensive

circuitry to be used.

For the Temperature and BusVoltage signals, offsetting is allowed but generally not necessary. The BusCurrentSupply signal

does not support an offset calibration nor is one needed for proper functioning.

Calibration of Juno analog inputs should occur when the board is powered up, with no analog velocity or torque
command asserted, with no motor output command asserted, and with the physical motor axis stationary. Two overall
calibration methods are provided. The simplest method is to send a CalibrateAnalog command. This command
allows one or more signals to be calibrated. This command will automatically measure and set the offsets so that the
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leg current analog, tachometer and AnalogCmd inputs are zeroed out. Because a number of samples are taken and
averaged, 100 mSec should be allowed for this command to complete. In addition, the Juno operating mode should
be set to motor output only before this command is executed.

The second method is to directly read each analog input via the ReadAnalog command and then write the same values
for the corresponding analog offsets using the SetAnalogCalibration command. When using this manual method it

is recommended that a number of analog reads of each signal are averaged together to improve the offset accuracy.

Regardless of how the analog offsets are determined, unless explicitly stored into NVRAM they will not be retained
after a reset or power cycle. For more information on NVRAM configuration storage see Chapter 12, Power-up,
Configuration Storage & NIV RAM.

Calibration of Juno's CurrentA-D, AnalogCmd, and Tachometer inputs, if used, is recommended to achieve the
full extent of smooth and quiet motion that Juno is capable of.

14.2.1 Analog Signal Calibration in the Production
Application

After integration into a PCB (printed circuit board), it is recommended that the Juno analog inputs be calibrated. While
some applications will not need to worry about these calibrations, for performance intensive applications where the

quietest, smoothest, and most accurate motion is desired, calibration of the analog inputs is recommended. For more

information refer to Section 2.9.2, "Analog Signal Calibration in the Production Application."

14.3 Direct Input SPI (Serial Peripheral
Interface)

Juno provides an SPI port that may either be used for high level host communications, for direct input of commands,
or for direct input of feedback values in conjunction with control loop operation. For more information on using the

SPI port for host communications, including how to command that SPI port to function as a direct SPI port, refer to

Section 13.5, "SPI (Serial Peripheral Interface) Communications.”

There are two ways to set Juno’s SPI port for direct input SPI operation. The first is via the SetCommMode host
command sent while the SPI port is operated in host communications mode. Immediately upon sending this
command the SPI port will thereafter switch to direct input mode, thus rendering SPI host communications
inoperable, however see Section 14.3.3, "Resetting SPI Direct Input Mode" for information on testoring the SPI port

to host communications while in direct input mode. The second occurs automatically if the loop command source is
set to the SPI port, or if the outer loop feedback source is set to SPI port. For more information on setting the loop

command source refer to Section 3.1, "Position Loop Operation", Section 4.1, "Selecting the Command Source" or

Section 5.1, "Selecting the Command Source." For information on setting the outer loop feedback source to SPI refer
to Section 3.2, "Outer L.oop Operation."

Once the SPI port enters direct input mode it will remain there until the next power cycle, or until a special SPI port

reset sequence is executed. See Section 14.3.3, "Resetting SPI Direct Input Mode" for more information. If an
NVRAM initialization sequence has been entered which sets the SPI port to direct input mode than only a
reprogramming of that NVRAM sequence, or application of the SPI Port reset sequence can restore the SPI port to

host communication mode.
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14.3.1 Direct Input SPI Data Write

Direct Input Command Word Command Data Word

Juno Response Word | Previous Command Data Word (may contain Os or 1s)
%514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

The signals that are used in conjunction with the SPI port are SPIXmt, SPIRcy, SPIClock.

The only SPI port operation supported in connection with the direct input function is a write by the external circuitry
of a 16 bit command data word. The write format is shown in Figure 14-1. In the direct input SPI mode the external
circuitry serves as the SPI master generating the clock and the enable, and transmitting the 16-bit data word data to
Juno.

The returned word by Juno is the previous command word received. It is recommended, but not required, that the
external circuitry read this returned word and confirm that it matches the previously transmitted word.

14.3.2 SPI Direct Input Data Formats

The interpretation of the transmitted SPI command data word that is received and interpreted by Juno depends on
the control mode that Juno has been set to. The following table shows this, indicating the content and interpretation
of the transmitted data word for each use of the direct input SPI port.

Function Control Module Interpretation

Velocity command Velocity loop Signed |6 bit value representing the velocity loop com-
mand value

Velocity command Position/outer loop Signed 16 bit value representing a velocity command
when using the position loop.

Current command Current loop Signed 16 bit value representing the current loop com-
mand value

Voltage command Motor output Signed 16 bit value representing the motor out module
command value

Position increment com- Step motor control Signed 16 bit value representing the relative (incremental)

mand distance that the position command has changed since the

previous relative position command write.

Outer loop command Position/outer loop Signed 16 bit value representing the outer loop command,
typically a pressure or temperature.

Outer loop measurement  Position/outer loop Signed 16 bit value representing the measured outer loop
value, typically a pressure or temperature reading.

Direct input SPI data for the velocity, current, or step motor control modules is signed and generally represents a

bipolar measured quantity centered around a value of zero.

Ditect input SPI data used for the position/outer loop module is signed, however depending on how the feedback
circuitry has been scaled the measurement sensor value may or may not be bipolar. See section, Section 14.1.3,

"AnalogCmd Signal With Position/Outer Loop" for mote information and a detailed example.

14.3.3 Resetting SPI Direct Input Mode

For Juno ICs that contain an initialization sequence in the NVRAM that sets the SPI host port to direct input mode
there may be situations where it is desirable to reset the SPI port to host communications mode, thereby allowing the

NVRAM programming to be changed or allowing other IC changes to be made via host communications.
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Exiting the host SPI port from direct input mode and restoring to host communication mode can be accomplished
by sending a special three word write sequence; A 0x55AA followed by a 0x33CC followed by a 0xOFFO0. After
receiving this sequence of direct input writes via the SPI port Juno will generate a drive exception error in the Event
Status register and a bit in the Drive Fault Status register will indicate an SPI mode change. In addition the SPI mode

will be set to host communications.

This SPI mode reset sequence does not affect the NVRAM content, so if the NVRAM initialization sequence sets the
SPI mode to direct input, at the next power cycle the SPI port will revert to direct input mode.
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